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ABSTRACT

We present a flexible analysis/synthesis tool for transient signals
that extends current sinusoidal and sines+noise models for audio
to sines+transients+noise. The explicit handling of transients pro-
vides a more realistic and robust signal model. Because the tran-
sient model presented is the frequency domain dual to sinusoidal
modeling, it has similar flexibility and allows for a wide range of
transformations on the parameterized signal. In addition, due to
this duality, a major portion of the transient model is sinusoidal
modeling performed in a frequency domain. In order to make the
transient and sinusoidal models work more effectively together,
we present a formulation of sinusoidal modeling (and therefore
transient modeling) in terms of matching pursuits and overlap-add
synthesis. This formulation provides a tight coupling between the
sines+transients+noise model because it allows a simple heuristic,
based on tonality, as to when an audio signal should be modeled
as sines and/or transients and/or noise.

1. INTRODUCTION

Sinusoidal modeling has enjoyed a rich history in both speech and
audio [1, 2, 3]. One of the goals behind sinusoidal modeling is to
allow meaningful transformations on the signal including time and
pitch modifications. One problem with sinusoidal modeling is its
difficulties in handling transient signals [4, 5, 6]. Because of these
difficulties, transformations on transient signals lack meaning and
flexibility. In [5], a flexible analysis/synthesis tool for transients
signals was introduced. Here we present extensions and refine-
ment to that work. The driving goal behind the model presented
is to provide a flexible low order model for transient signals that
fits well with current sinusoidal and sines+noise models. Extend-
ing these models to sines+transients+noise provides a more robust
signal model and is essential for synthesizing realistic attacks of
many instruments. The first section of the paper examines the
need for an explicit transient model. The next section describes
the flexible model for transient signals in terms of a duality to si-
nusoidal modeling. Because of this duality, the transient model is
closely related to sinusoidal modeling. We describe a novel formu-
lation for sinusoidal modeling, and therefore transient modeling,
in terms of matching pursuits and overlap-add synthesis in sec-
tion 4. The next section discusses how the sines+transients+noise
model fits together. In addition, we describe how the matching
pursuit/overlap-add formulation provides a tight coupling between
the model’s components because it allows a simple heuristic, based
on tonality, as to when an audio signal should be modeled as sines
and/or transients and/or noise. The final section gives an example.

2. MOTIVATION FOR A TRANSIENT MODEL

McAulay and Quatieri’s Sinusoidal Transformation System (STS)
[1] and Serra and Smith’s Spectral Modeling Synthesis (SMS) [2]
find sinusoidal components in a signal by spectral peak picking
algorithms. Subtracting the synthesized sinusoidal components
from the original signal creates a residual that consists of compo-
nents that are not well modeled by sinusoids. These components
are transients and noise [3, 4]. Although transients and noise can
be modeled by a sum of sinusoidal signals, as in the case of the
Fourier Transform, it is not necessarily efficient or meaningful. In
the STS system, generally applied to speech, the transient+noise
residual is often masked sufficiently to be ignored [1]. In audio
applications, this residual is important to the integrity of the sig-
nal. The SMS system furthers the sinusoidal model by explicitly
modeling the residual as slowly filtered white noise. Although this
technique has had success, transients do not fit well into this model
either. Transients modeled as filtered noise lose sharpness in their
attack and sound dull. As suggested by others [2, 6, 7], transients
need to be handled separately from both noise and sinusoids. One
method that has been considered is removing transient areas from
the residual, performing noise analysis, then adding the transients
back into the signal [4, 7]. Although this method works, it has
drawbacks. First it lacks flexibility because there is no model for
the transients; they are left in their original format. Secondly many
instruments have an underlying noise, the breathiness of a flute for
example, that is neither sinusoidal nor transient. Removing tran-
sient in the fashion stated, both transients and noise are removed.
It is desirable to model transients separately but leave noise to the
noise model. Another approach is to insure the sinusoidal model
can handle any type of signal, including transients and noise, as
is the case in [3]. For many transformations, however, it makes
sense to transform the sinusoidal components differently from the
transient components which is not possible if the sinusoidal model
handles the entire signal. With an all inclusive sinusoidal model,
it is not clear if transformations will be natural [8]. The need for
an explicit flexible transient model that allows for transformations
and fits well into current sines+noise models motivate the transient
model presented here.

3. THE TRANSIENT MODEL

The underlying theme behind the transient model is that it is the
frequency domain dual to sinusoidal modeling. Because of this du-
ality, the parameters that characterize the sinusoidal components of
a signal also characterize the transient components of a signal, al-
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Figure 1: (a) Exponentially decaying sinusoid. A difficult signal
for sinusoidal modeling. (b) DCT of exponentially decaying sinu-
soid. An ideal signal for sinusoidal modeling

though, as will be shown, in a different domain. Additionally, this
allows the core components of the transient modeling algorithm to
be identical to the sinusoidal modeling algorithm.

3.1. Duality between sines and transients

There is a isomorphic duality between well developed sinusoids
and transients. That is we can describe both sinusoids and tran-
sients with the same tool, namely sinusoidal modeling, provided
we view the signal under question properly. This duality becomes
apparent when observing the nature of these signals in the time
and frequency domains. A slowly varying sinusoidal signal is im-
pulsive in the frequency domain. This is why sinusoidal modeling
is so effective at modeling slowly varying sinewaves. By perform-
ing a Short-Time Fourier Transform (STFT) analysis on the time-
domain signal and tracking spectral peaks (the tips of the impulsive
signals) over time, we can easily model slowly varying sinewaves.
In contrast, transients, which are impulsive in the time-domain,
cannot be easily tracked this way because its STFT analysis will
not contain meaningful peaks. However due to the duality between
time and frequency, if transients are impulsive in the time-domain,
they must be oscillatory in the frequency domain. Therefore we
can track transients by performing sinusoidal modeling in a prop-
erly chosen frequency domain. The first step in the transient model
is to map transient signals in the time domain to sinusoidal signals
in some frequency domain. The Discrete Cosine Transform (DCT)
provides such a mapping. It is defined as:
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Roughly speaking, an impulse that occurs toward the begin-

ning of a frame results in a DCT domain signal that is a relatively
low frequency cosine. If the impulse occurs toward the end of the

frame, then the DCT of the signal is a relatively high frequency
cosine. Transients encountered in real audio signals, however, are
not generally ideal Kronecker Delta functions. Figure 1a shows
a more realistic transient which is a one sided exponentially de-
caying sinewave. Performing sinusoidal modeling on this signal
would be difficult for many reasons including meaningful param-
eter estimation and the number of sinusoids required to represent
such an impulsive signal. Figure 1b shows the DCT of the transient
signal. In contrast to the time-domain signal, the DCT domain sig-
nal is exactly the type of signal that sinusoidal modeling performs
best on; it is a slowly varying sinewave. Therefore by performing
sinusoidal modeling in the DCT domain, we are actually modeling
time-domain transients.

3.2. Algorithm for transient modeling

The previous discussion leads to a simple algorithm for an effec-
tive analysis/synthesis transient modeling tool. During the anal-
ysis, take non-overlapping blocks of the input signal. On each
block perform a DCT. Now perform sinusoidal modeling. This
will result in model parameters that correspond to time-domain
transients. The combination of the DCT then STFT analysis to find
meaningful peaks takes the signal from the time-domain into the
DCT frequency domain and then back into some type of time-like
domain. Although it may seem redundant for the transient model
to perform these transformations, theses operations rotate (unitary
transforms simply rotate vector spaces) the signal in such a way
to make transients readily apparent. Synthesis of the transients in-
volves reconstructing the DCT domain sinusoids then taking an
Inverse Discrete Cosine Transform (IDCT) to finally reconstruct
the time-domain transients.

4. MATCHING PURSUIT/OVERLAP-ADD
FORMULATION

A major portion of the transient model, because of the duality pre-
viously discussed, is sinusoidal modeling. Many methods for sinu-
soidal modeling exist [1, 2, 3]. Here we present a new formulation
of sinusoidal modeling, and therefore a major part of the transient
model, as a variation of matching pursuits with overlap-add syn-
thesis.

4.1. Matching pursuits

Matching pursuits refers to an iterative method for computing sig-
nal decompositions in terms of a linear combination of vectors
from a highly redundant dictionary [9]. TheM elements of the
dictionary,D = fgmg;m = 1; 2; : : : ;M , spanRN and are re-
stricted to have unit norm,kgmk = 1 for all m. The algorithm is
greedy in that at each stage the vector in the dictionary that best
matches the current signal is found and subtracted to form a resid-
ual. The algorithm then continues on this residual signal. More
specifically, in the first stage of the algorithm, the first residual is
set equal to the input signal:r1 = x. The first index,m�

1, that cor-
responds to the dictionary element that has the largest correlation
with the first residual is found. This index maximizesj
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over allm. The projection onto this dictionary element is then
subtracted from the current residual to form the next stage resid-
ual. Thus at thekth iteration, fork > 1, the residual signal is
rk = rk�1 � �k�1gm�
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Therefore, the decomposition consists of a set of weighting terms
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then the reconstruction is:
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The energy in the residual converges to zero as the number of
iterations approaches infinity [9]. Although exact reconstruction
is possible, the matching pursuit is generally stopped by some cri-
teria to allow low order approximations to the input signal. For
the purposes of a sines+transients+noise model of audio, the stop-
ping criteria is important and will be considered in more detail in
section 5.

4.2. Overlap-add formulation

In our formulation of sinusoidal modeling, frames of the signal
x are represented as a combination of sinusoidal signals. The
combination is found via matching pursuits. These frames are
then combined in an overlap-add fashion to reconstruct the entire
signal. Mathematically we must takex : fx[n]; n 2 Zg con-
strained to be inl2(Z), and make an ensemble of timelimited sig-
nalsxl : fxl[n]; l; n 2 Zg by hopping a rectangular window over
signal. Define thelth windowed signal as

xl[n] = uN

h
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Where a hopsize of half the window length is assumed and
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is the rectangular window. Each of these timelimited signals can
then be considered a finite duration signal inRN to which match-
ing pursuits are applied. Although we consider each timelimited
signal a finite duration signal in order to apply matching pursuits,
we keep track of the time location of each frame to ensure proper
reconstruction. Therefore the matching pursuit reconstruction of
each frame,̂xl : fx̂l[n]; l; n 2 Zg, is once again considered an
ensemble of timelimited signals. Finally, the approximation tox,
x̂ : fx̂[n]; n 2 Zg, is completed with a windowed overlap-add
reconstruction of the form:
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Where the reconstruction windoww is a timelimited function with
the constraint

P
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= 1. If the error of the matching

pursuit on each windowed signal is allowed to converge to zero, the
formulation yields a perfect reconstruction system which is imme-
diate from plugging (1), which is the error-free matching pursuit
decomposition of each frame, into equation (2).

4.3. The matching pursuits dictionary

It still remains to define the dictionary to use for matching pur-
suits. We could use cosines indexed by parameters of uniformly
spacedfrequency andphase. Theamplitude parameter would
be found by the correlation computation. This formulation is pos-
sible, but the dictionary is parameterized by bothfrequency and
phasewhich leads to inefficiency in the computation of the match-
ing pursuit. By using a generalization of the matching pursuit algo-
rithm developed in [10], the phase parameters can be found as part

of the correlation computations. In addition, the correlation com-
putations can be efficiently computed by use of the Fast Fourier
Transform (FFT).

The generalizations in [10] allow each iteration of the match-
ing pursuit to find optimal dictionary subspaces as opposed to find-
ing the optimal dictionary element. Choosing the subspace as a
dictionary element and its complex conjugate allows many sim-
plifications in the computations required for the matching pursuit
formulation. We now consider a dictionary that consists of com-
plex exponentials,gm(n) = ej2�fmn and its complex conjugates.
This dictionary is indexed only by thefrequency parameter. As
shown in [10], if the signal to be decomposed is real, then the ex-
pansion coefficients appear in conjugate pairs and the new resid-
ual at each stage of the matching pursuit is also real. In addition,
because the choice of dictionary elements are complex exponen-
tials, at each iteration, the projection onto the dictionary subspace
at will be a constant amplitude, constant frequency cosine. The
amplitude andphase for each of the cosines are found from the
set of weightsf�1; �2; : : :g, i.e., from the correlation computa-
tions, and thefrequency for each is found from the set of indices
fm�

1; m
�

2; : : :g.
Since each iteration of the matching pursuit requiresM cor-

relation calculations, after which the largest absolute correlation
must be found, the computational complexity is high. The com-
putational burden can be lessened by updating the correlations at
each iteration using [9]:

hgm; rki = hgm; rk�1i � �k�1

D
gm; gm�

k�1

E
; for all m (3)

Thus for any application of matching pursuits only one set ofM

correlations need be computed at the start and the rest of the corre-
lations for subsequent residual signals can be updated iteratively.
In addition, because our dictionary for sinusoidal modeling con-
sists of uniformly spaced complex exponentials and their complex
conjugates, we can use the Discrete Fourier Transform (DFT) (or
the FFT if the number of dictionary elements are a power of2) for
the initial correlation computation. The amount of zero-padding
in the DFT computation determines the redundancy of the dictio-
nary. Furthermore, at each iteration, equation (3) in terms of the
DFT, says that the windowed (in our formulation, a rectangular
window) transform of the previous iterations projection should be
subtracted from the previous iteration’s correlations (or DFT) to
get the updated correlations (or DFT).

5. THE COMPLETE MODEL

With the transient model and the matching pursuits/overlap-add
formulation of sinusoidal modeling described, a flexible sines+
transient+noise model for audio signals is now presented. The
first step in the model is sinusoidal modeling. The meaningful
sinusoids are modeled and removed from the signal, creating a
residual signal, using the sinusoidal model formulation previously
described. This residual signal that now consists of transients+
noise is processed by the transient model. Transients are modeled
and removed by the techniques previously described. Finally, the
signal that now consists of noise is modeled as a filtered random
process using techniques in the literature [2, 6].

Formulating sinusoidal modeling in terms of matching pur-
suits and overlap-add synthesis leads to an algorithm that is sim-
ilar to the analysis-by-synthesis sinusoidal modeling algorithm in
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Figure 2: (a) Original xylophone. (b) Synthesized sinusoids. (c)
First residual containing transients+noise. (d) Synthesized tran-
sients. (e) Second residual containing noise

[3]. An important question in a matching pursuit or analysis-by-
synthesis is when to stop the algorithm. In [3], because only sinu-
soidal components are used in the model, the algorithm continues
until the residual is acceptably small. If the signal is transient or
noise-like the algorithm will require many iterations resulting in
many sinusoidal parameters. In our formulation, because we use
explicit sinusoidal, transient and noise models, we need to stop the
sinusoidal algorithm before transients or noise are modeled as si-
nusoids. In addition, we need to stop the transient model matching
pursuit before noise is modeled as transients.

To this end we use a heuristic based on the tonality of the sig-
nal. The tonality is measured as in [11]. Using this measure, the
matching pursuits iterations continue until the residual is no longer
tonal. This works for both the sine and transient portions of the
model because in the time-domain if a signal is not tonal it does
not contain time-domain sinewaves and in the DCT domain if sig-
nal is not tonal it does not contain time-domain transients.

6. EXAMPLE

As an example, we show the sines+transients+noise analysis on
a xylophone hit, the results of which are shown in figure 2. The
xylophone, although inharmonic, has a perceived pitch which is
modeled well by the sine portion of the representation. Figure 2(a)
is a plot of the original signal sampled at44:1KHz, while fig-
ure 2(b) shows the synthesized sinusoids. Figure 2(c) is the first

residual which shows the sharp attack of the sound as well as some
underlying noise. The attack, as modeled by the transient model, is
shown in figure 2(d). Figure 2(e) shows the second residual which
is the part of the original signal that is not well modeled by sines
or transients. This is slowly varying noise. If the first residual sig-
nal were passed to the noise model without the transient model, the
attack would be smeared and the characteristic ‘knock’ of the xylo-
phone would be lost. The summation of the sines+transient+noise
portions yield a signal that is perceptually indistinguishable from
the original.

7. CONCLUSION

Combining the transient model with current sines+noise models
allows parameterization of a wide range of sounds while the syn-
thesized versions are perceptually identical to the original. Be-
cause many sounds can be meaningfully thought of in terms of the
components of sines, transients and noise, transformations that are
intuitive and natural are possible.
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