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ABSTRACT

Constrained adaptive optimization techniques are em-
ployed in this paper to design direct blind equalizers. The
method is based on minimizing the equalizer's output vari-
ance subject to appropriate constraints. The constraints
are chosen to guarantee no desired signal cancellation and
are also jointly and recursively optimized to improve per-
formance. Our method provides adaptive solutions which
directly optimize the equalizer's parameters, while its per-
formance compares favorably to that of the linear predic-
tion based approaches. Global convergence is established
and comparisons with other blind and trained methods are
presented.

1. INTRODUCTION

Direct equalizer design has received considerable attention
recently, because it avoids the explicit step of estimating the
channel parameters. Adaptive direct methods have been
derived based on multichannel linear prediction [1], yield-
ing simple recursive algorithms. However, those methods
are naturally suited for the noiseless case and possess no
optimality in the presence of noise.
From a di�erent viewpoint, batch constrained optimiza-

tion methods were developed in [7], which minimize the re-
ceiver's output variance subject to appropriate constraints.
Such methods originated in array processing (Minimum
Variance Distortionless Response and Capon beamformers),
and have been proposed for multiuser communication prob-
lems in the context of CDMA systems [5], [8]. It was shown
in [7], that by jointly optimizing the constraint parameters,
a blind method may be derived whose performance is close
to that of the trained MMSE equalizer at high SNR. It is
worthwhile therefore, to explore adaptive implementations
of such techniques, in order to reduce their computational
complexity.
In this paper we derive stochastic gradient and RLS based

methods for adaptive multichannel equalization based on
recursive constrained optimization techniques which origi-
nated in [2]. In our case, the set of constraints depends
on certain parameters which also have to be optimized.
This further complicates the optimization process as well
as its convergence analysis. However, global convergence
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Figure 1. Multichannel model with J antennas

for the proposed algorithms is established. Comparisons
with other equalizers such as linear prediction method [3]
and the MMSE receiver are also presented.

2. MULTICHANNEL MODEL

Consider a communication system with linear modulation
and let the user transmit symbols w(m) with period Ts
through a multipath FIR channel. Multiple channels may
result from employing an antenna array or from oversam-
pling the output signal of the receiver. Assume J antennas
are used to get J diversity channels. It can be shown (c.f.
[7]) that after sampling at t = nTs, the received discrete-
time signal y(n) = [y1(n); : : : ; yJ(n)]

T is (see Fig. 1)

y(n) =

1X
m=�1

w(m)h(n�m) + v(n) ; (1)

where
h(n) = [h1(n); : : : ; hJ(n)]

T , v(n) = [v1(n); : : : ; vJ(n)]
T .

Following common practice in communications, we assume
that the channels hj(k) are FIR of order q. Then, if we
consider a collection of M successive data vectors yM (n) =
[yT (n); : : : ;yT (n�M + 1)]T , equation (1) yields

yM (n) = T (h)wM (n) + vM (n) ; (2)

where

T (h) =

2
6664
h(0) : : : h(q) : : : : : : 0
...

. . .
. ..

...
...

. . .
. . .

...
0 : : : : : : h(0) : : : h(q)

3
7775 (3)

is a (JM)� (M + q) block Toeplitz matrix, and wM (n) =
[w(n); : : : ; w(n�M�q+1)]T , vM (n) = [vT (n); : : : ;vT (n�



M +1)]T . Equations (2), (3) present a compact matrix for-
mulation which will be useful in the development of con-
strained optimization methods in the sequel.

3. BLIND MINIMUM VARIANCE
EQUALIZER

The minimum variance approach to blind equalization is
based on the similarity of eq. (2), (3) with correspond-
ing array processing models [7]. Indeed, if w(n� d) is the
desired signal (or \source") for a �xed delay d, the other
elements of wM (n) may be regarded as interfering signals
(or \sources"). The signature of the signal w(n � d) is the
d + 1 column of T (h) and is given by Ch (c.f. eq. (3))
where

C =

"
0J(d�q�1)�J(q+1)
IJ(q+1)�J(q+1)
0J(M�d)�J(q+1)

#
; h =

2
4 h(q)

...
h(0)

3
5

and where M � d + 1 � q + 1. In order to apply MVDR
beamforming ideas in the current setup, we minimize the
output variance subject to appropriate constraints such that
no desired signal cancellation occurs. In order to force a
constant response for the signal of interest, we consider the
set of constraints CHf = u, where u is an arbitrary parame-
ter vector. We therefore arrive at the optimization problem

min
f

Efkŵ(n�d)k2g = min
f

fHRyf subject to C
Hf = u; (4)

where Ry = EfyM (n)yHM (n)g, and f = [fT1 ; : : : ; f
T
J ]

T is a
multichannel FIR equalizer of length M in each branch fi,
(i = 1; : : : ; J). For a given constraint parameter vector u
the minimum variance solution is (eg. [6])

fopt = R�1y C(CHR�1y C)�1u ; (5)

while the minimum variance at fopt becomes

Jmin = fHoptRyfopt = uH(CHR�1y C)�1u : (6)

In order to optimize the constraint parameter vector u, we
employ Capon beamforming ideas and maximize the mini-
mum variance in (6)

max
u

J0min = max
u

uH(CHR�1y C)�1u

uHu
: (7)

A normalized version of (6) is used in (7) which is insensi-
tive to the length of u. The optimal solution to this prob-
lem uopt is the eigenvector of matrix (CHR�1y C)�1 corre-
sponding to its maximum eigenvalue. Equations (5) and (7)
constitute a complete batch equalization algorithm. In the
next section, we directly minimize the joint Lagrange cost
function with a gradient descent procedure and avoid the
explicit computation of R�1y to reduce its computational
cost.

3.1. Constrained Stochastic Gradient (CSG)
Equalizer

Let us write the Lagrangian cost function explicitly as

J1 = fHRyf + �
H(CHf � u) + (fHC� uH)� ; (8)

where constraints for f are considered and � is the corre-
sponding Lagrange multiplier. Our goal is to minimize J1
with respect to f and maximize it with respect to u, so we
obtain two update equations for f and u respectively as

fn+1 = fn � �frf�n
J1 (9)

un+1 = un + �u(I�
unu

H
n

uHn un
)ru�n

J1 (10)

where �f ; �u are two step sizes. A projection matrix is used
in (10), since a change in the length of u only a�ects the
scaling of f (see (5)) and has no e�ect on the performance
of the receiver. Thereafter normalization of un+1 follows

un+1  
un+1
kun+1k

(11)

at each iteration to make the algorithm consistent with the
normalized solution to (7) which we seek. In order to obtain
our �nal update equations, we substitute the gradient of (8)
in (9),(10). Furthermore, we determine �n by enforcing the
constraint CHfn+1 = un at each iteration (see also [2]).

Finally we employ instantaneous approximation R̂y(n) =
yM (n)yHM (n) for Ry, and arrive at the recursions

fn+1 = (I�CCH)[fn � �fyM (n)yHM (n)fn] +Cun (12)

un+1 = un+
�u

�f
(I�

unu
H
n

uHn un
)CH [�fyM (n)yHM (n)�I]fn (13)

Equations (12); (13) and (11) constitute our CSG based al-
gorithm. Eq. (12) resembles the method of [2]. In the
current setup however, the constraints are not �xed, but
depend on a parameter vector u which is also updated. The
major di�culty induced that way, is that the cost function
depends on the length of u; hence, even at the desired solu-
tion, ru�

opt
J1 6= 0 but is parallel to uopt. This necessitates

the projection and/or normization operations of (10), (11).
In the sequel, we avoid that problem by explicitly constrain-
ing the length of u in the cost function.

3.1.1. Alternative Constrained Stochastic Gradient
(ACSG) Equalizer

Let us augment the cost function J1 in eq. (8) by enforcing
the constraint kuk = 1,

J2 = fHRyf+�
H(CHf�u)+(fHC�uH)�+�(uHu�1) :

(14)
Here, two kinds of lagrange multipliers, the vector �

and scalar � are involved corresponding to the linear and
quadratic constraints. From (14) we may compute the gra-
dients rf� J2 = Ryf +C�, and ru� J2 = �u��, and arrive
at two iterative equations for f and u

fn+1 = fn � �f (Ryfn +C�n) (15)

un+1 = un + �u(�nun � �n) (16)



Substituting (15) in CHfn+1 = un we solve for �n, and
obtain the same update equation for fn+1 as in (12). A
di�erent expression however is obtained for un+1

un+1 = �u�nun + xn (17)

where xn can be expressed as

xn = un �
�u

�f
[CH(fn � �fyM (n)yHM (n)fn)� un] (18)

after using an instantaneous approximation R̂y(n) =
yM (n)yHM (n) for Ry. Imposing the constraint on un+1 as
uHn+1un+1 = kun+1k

2 = 1 and substituting from (17), we
can obtain �n by solving a second order equation

a1�
2
n + a2�n + a3 = 0 (19)

where

a1 = �
2
ukunk

2
; a2 = �u(u

H
n xn + xHn un); a3 = xHn xn

Once �n is obtained, un+1 can be updated according to
(17). This algorithm facilitates our theoretical analysis due
to the explicit cost function of (14).

Both methods are LMS based and their convergence de-
pends on the eigenvalue spread of Ry. Hence, they may
experience slow convergence rates at high SNR. For this
reason we explore RLS based solutions with faster conver-
gence in the next section.

3.2. Blind RLS Equalizer

If we re-consider the cost function (7) from a computational
point of view, we can see that the inversion of Ry con-
stitutes the main bulk of the computational burden. The
eigendecomposition step is less demanding since CHR�1y C
is a much smaller matrix of size J(q+1)�J(q+1) compared
with Ry (JM � JM). We may therefore provide a recur-
sive version of (5),(7), by invoking Kalman-RLS methods

for updating R̂�1y (e.g. [4])

k(n) =
R̂�1y (n� 1)yM (n)

� + yTM (n)R̂�1y (n� 1)yM (n)
(20)

R̂�1y (n) =
1

�
R̂�1y (n� 1)�

1

�
k(n)yTM (n)R̂�1y (n � 1) (21)

The forgetting factor � is chosen close to 1 and R�1y is

initialized as R̂�1y (0) = ��1I (� is a small positive number).

SVD may be performed on the matrix CHR̂�1y (n)C at each
iteration

CHR̂�1y (n)C = V(n)D(n)VH(n) ; (22)

and u chosen as the eigenvector corresponding to the min-
imum eigenvalue. Equations (20) to (22) together with (5)
comprise our RLS algorithm.

4. GLOBAL CONVERGENCE

Our joint cost function J2 in (14) is parametrized by both
f and u, so it is not immediately clear that our algorithm
enjoys global convergence. In order to show this result in
the sequel we identify all the stationary points and check
their stability. At each stationary point, we have

rf� J2 = Ryf +C� = 0

ru� J2 = �u� � = 0 (23)

Cancelling out � and substituting f in the constraint CHf =
u, we obtain

(CHR�1y C)�1u = ��u (24)

� = �(CHR�1y C)�1u (25)

hence (��;u) is an eigen-pair of (CHR�1y C)�1. Thus, the
set of possible equilibrium points includes the desired solu-
tion u, which is the eigenvector corresponding to the maxi-
mum eigenvalue of (CHR�1y C)�1 (c.f. eq. (7)). Equations
(24), (25) indicate however, that the cost function possesses
stationary points at all eigenvectors of (CHR�1y C)�1, and
not only at the maximum one. We therefore need to inves-
tigate the Hessian matrix of J2 at the stationary points to
determine their stability. From (23) and (25) we obtain

r2
u� J2 = �I+ (CHR�1y C)�1

= V

2
4 �+ �1 0

. . .

0 �+ �J(q+1)

3
5VH (26)

where V contains the eigenvectors of (CHR�1y C)�1 while
�i (i = 1; : : : ; J(q + 1)) represents its eigenvalues. Let us
order �1 � �2 � : : : � �J(q+1) without loss of generality.
According to (24), at a stationary point we have � = ��i
for some i = 1; : : : ; J(q + 1). We may therefore distinguish
the following three cases:

1) If � = ��1 = ��min, then �+ �i � 0 8i and therefore
r2

u�J2 � 0 indicating a minimum point (c.f. (26)).

2) If � = ��J(q+1) = ��max, then � + �i � 0 8i and
therefore r2

u� J2 � 0 indicating a maximum point.

3) If � = ��i, 1 < i < J(q +1), then �+ �1 � 0 while �+
�J(q+1) � 0 and hence r2

u� J2 is nonde�nite, indicating
a saddle point.

In conclusion, the algorithm will enjoy a globally conver-
gent maximum point as long as the maximum eigenvalue
�max has multiplicity equal to one. The latter fact was es-
tablished in [7] under certain conditions on the equalizer
length.
Finally, since for a given u there exists a unique opti-

mum f (see eq. (5)), global convergence of u implies global
convergence of f .

5. SIMULATIONS

In our simulations, BPSK modulation and raised cosine
pulse shaping �lter (� = 0:25) were used. The i.i.d. sig-
nal taking values f�1;+1g was transmitted through a 3-
ray multipath channel. Each multipath signal arrived at
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Figure 2. SINR comparison of LMS methods

6-antenna array spaced at half wavelength (�2 ) with a dif-
ferent angle and delay. The signal to white Gaussian noise
ratio for each antenna was 10dB; d = 5 and M = 9 were
chosen which satis�ed the identi�ability conditions (see [7]).
SINR (Signal to Interference and Noise Ratio) versus time
was used as our criterion for comparison with other meth-
ods.
First we compared our CSG equalizer with the trained

MMSE and the linear prediction based adaptive equalizer
of [3] in terms of the average output SINR for 100 Monte
Carlo runs. As can be seen in Fig. 2 that the proposed
method su�ers a 4:5dB loss when compared with the trained
MMSE equalizer but enjoys a 5dB gain compared with
[3]. Figure 3 compares the proposed RLS method with the
trained RLS MMSE equalizer. The lower line shows the
SINR for the proposed method, while the upper one for
the MMSE solution. We can see that the RLS-version of
the method performs closer to the MMSE equalizer than
our LMS based algorithm at the expense of increased com-
putational cost. In our last experiment, two di�erent LMS
based algorithms of CSG and ACSG were tested under the
same conditions and compared in Fig. 4. It is clear from
the �gure that the SINR of these methods converges to
approximately the same level (about 13dB), but di�erent
convergence rates can be observed. The ACSG algorithm
converges after 700 iterations according to Fig. (4b) while
the other method needs 1100 iterations to converge.
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