
ANALYTIC CENTER APPROACH TO PARAMETER ESTIMATION:
CONVERGENCE ANALYSIS

Er-Wei Bai1, Minyue Fu2, Roberto Tempo3 and Yinyu Ye4

1Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242 USA
2Department of Electrical and Computer Engineering, University of Newcastle, N.S.W., 2308, Australia

3CENS-CNR, Politecnico di Torino, Torino 10129 ITALY
4Department of Management Science, University of Iowa, Iowa City, IA 52242 USA

ABSTRACT

The so-calledanalytic center approachto parameter esti-
mation has been proposed recently as an alternative to the
well-known least squares approach. This new approach of-
fers a parameter estimate that is consistent with the past data
observations, has a simple geometric interpretation, and is
computable sequentially. In this paper, we study the asymp-
totic performance of the analytic center approach and show
that the resulting estimate converges to the true parameter
asymptotically, provided some mild conditions are satisfied.
These conditions involve some weak persistent excitation
and independence between noise and regressor, similar to
the least squares case. This result is used to derive a new
parameter estimation approach which offers both good tran-
sient and asymptotic performances.

1. INTRODUCTION

It is well-known that the commonly used least squares based
parameter estimation algorithms often suffer from a poor
transient performance. This is caused by the lack of obser-
vation data for establishing reliable noise statistics or non-
stationarity of noises and/or parameters.

An alternative approach calledanalytic center approach
to parameter estimation has been proposed recently by Bai,
Ye and Tempo [2]. To understand this, we consider the fol-
lowing system:

yi = qTi � + vi i = 1; 2; : : : ; n (1.1)

whereyi 2 R is the output,qi 2 R
m is the regressor,

� 2 Rm is the unknown parameter vector,vi 2 R is the
measurement noise withjvij � �v. We assume that the re-
gressor is bounded, i.e.,

jjqijj � � (1.2)

for all i = 1; 2; : : : ; n. This assumption is necessary for the
outputyi to be bounded.

Define the membership set [1]


n =

n\
i=1

f�̂ : (yi � qTi �̂)
2 � �v2g: (1.3)

The analytic center of
n is defined to be

�an = argmin
�̂2
n

fn(�̂) (1.4)

where

fn(�̂) = �
1

n

nX
i=1

ln(�v2 � (yi � qTi �̂)
2) (1.5)

An obvious observation of the analytic center is that the
estimate�an at anyn is consistent with the past observa-
tions, i.e., the estimated noise samplesv̂i = yi � qTi �

a
n; i =

1; � � � ; n do not violate the prescribed bound�v. Due to its
consistency with the past observations, the analytic center
approach gives a better transient performance than the least
squares approach in general.

A simple interpretation of the analytic center is that this
is a “geometric center” because�an can be rewritten as fol-
lows.

�an = argmax
�̂2
n

nY
i=1

(�v2 � (yi � qTi �̂)
2) (1.6)

In contrast, the least squares estimate computes

�LS
n = argmin

�̂

nX
i=1

(yi � qTi �̂)
2 (1.7)

which is an “arithmetic center”.
The main results of [2] can be summarized as follows:

The analytic center estimate is an estimate inside the mem-
bership set which maximizes the complementary average
output error (1.6). Moreover, contrary of other centers like
Chebyshev, it allows for an easy-to-compute sequential al-
gorithm. The maximum number of Newton iterations re-
quired to compute a sequence of analytic centers is linear in



the number of observed data points and it is comparable to
the complexity of off-line algorithms for estimating a single
analytic center.

In this paper, we are interested in the asymptotic per-
formance of the analytic center. The motivations are as fol-
lows. First, we know that the least squares estimate asymp-
totically converges to the true parameter under some mild
conditions, i.e., persistent excitation and independence be-
tween the noise and regressor [4]. Hence, it is important to
know if the analytic center possesses a similar property or
not. Secondly, the least square estimate is very efficient to
compute using a recursive formula while the computation of
the analytic center is in general much more involved when
the number of data observations becomes large. Knowing
the asymptotic performance of the analytic center will help
us design an efficient algorithm to reduce its computational
complexity.

The main results of this paper are summarized as fol-
lows. In Section 2, we show that the analytic center es-
timate�an converges to the true parameter� provided that
the noise and the regressor satisfy a weak persistent excita-
tion condition and an independence condition. The second
condition is also shown to be necessary for asymptotic con-
vergence. These conditions are analogous (but different) to
those required for the asymptotic convergence of the least
squares estimate. In Section 3, we extend the result above
by proposing a mixed approach to parameter estimation.
This approach combines the analytic center and the least
squares, and is expected to help give both good transient
and asymptotic performances. A similar asymptotic con-
vergence property is established. A simulation example is
given in Section 4 to illustrate the asymptotic behaviours of
the least squares approach and the analytic center approach.
This example also demonstrates the tradeoff between them.

2. CONVERGENCE ANALYSIS

In this section, we analyze the asymptotic performance of
the analytic center, i.e., the behaviour of�an asn ! 1. To
this end, we assume in the rest of the paper that the noise
vi is “normalized” such that its bound�v < 1 but close to 1.
Accordingly, we modify the analytic center a bit by using a
slightly larger membership set


n =

n\
i=1

f�̂ : (yi � qTi �̂)
2 < 1g: (2.8)

and a slightly different objective function

fn(�̂) = �
1

n

nX
i=1

ln(1� (yi � qTi �̂)
2): (2.9)

We define two conditions:

Condition 1: There existn0 > 0 and� > 0 such that for
all n � n0,

1

n

nX
i=1

qiq
T
i � �I: (2.10)

In the literature the above condition is referred to as the
Weak Persistent Excitation condition [3].
Condition 2:

lim
n!1

1

n

nX
i=1

vi

1� v2i
qTi = 0: (2.11)

Remark 2.1 Condition 2 is satisfied ifvi andqi are inde-
pendent ergodic random variables withE(qi) = 0 or vi is
symmetric; i.e,p(x) = p(�x) which impliesE( vi

1�v2
i

) = 0.

The above also holds whenqi is a deterministic time func-
tion andvi is a symmetric independent random variable or
whenvi is a deterministic time function butqi is an inde-
pendent random variable withE(qi) = 0.

Two theorems are presented below. The first one an-
swers the question when the analytic center gives a correct
estimate, i.e.,�an = �. The second theorem, which is the
main result in this section, studies the convergence property
of the analytic center.

Theorem 2.1 Suppose Condition 1 holds andn � n0. Then,
�an = � if and only if the following condition holds:

nX
i=1

vi

1� v2i
qTi = 0: (2.12)

Proof: Condition 1 guarantees the existence and unique-
ness of the analytic center�an for n � n0. Further,�an is the
solution to

dfn(�̂)

d�̂
= 0

which is equivalent to

�
1

n

nX
i=1

qi(yi � qTi �
a
n)

1� (yi � qTi �
a
n)

2
= 0: (2.13)

If �an = �, then the above reduces to (2.12). Conversely, if
(2.12) holds, then�an = � is a solution to the above. By the
uniqueness of�an, this is the only solution. Hence,�an = �

if and only if (2.12) holds.

Theorem 2.2 The parameter estimation error given by the
analytic center has the following bound forn � n0:

jj�an � �jj � jj

 
1

n

nX
i=1

qiq
T
i

1� v2i

!�1
jj � jj

1

n

nX
i=1

2vi
1� v2i

qijj:

(2.14)
In particular,�an ! � asn!1 if Conditions 1 and 2 hold.
Conversely, if�an ! � asn ! 1, then Condition 2 must
hold.



Proof: The proof is rather lengthy, and will be included in
the full version of the paper.

3. MIXED APPROACH TO PARAMETER
ESTIMATION

It is interesting to compare the convergence conditions for
the analytic center approach with the recursive least squares
(RLS) approach. In the LS case Condition 1 remains the
same while Condition 2 is replaced with a slightly simpler
condition

lim
n!1

1

n

nX
i=1

viq
T
i = 0: (3.15)

The solution to the LS problem (3.16) is given by

�LS
n =

 
1

n

nX
i=1

qiq
T
i

!�1
1

n

nX
i=1

qiyi

= � +

 
1

n

nX
i=1

qiq
T
i

!�1
1

n

nX
i=1

qivi: (3.16)

The main tradeoff is that RLS is much simpler but does
not guarantee that the solution lies in the membership set
all the time, while the analytic center is much more difficult
to compute [2]. In particular, the computing time grows as
n increases. Therefore, it would be nice to start with the
analytic center and then switch to RLS whenn becomes
large. To this end, we propose a mixed approach which
takes the advantages of the both approaches.

Our approach computes a mixed analytic-arithmetic cen-
ter

�mn = argmin
�̂

f

nX
i=1

wa
i;n ln(1� (yi � qTi �̂)

2)�1

+

nX
i=1

wLS
i;n(yi � qTi �̂)

2g (3.17)

wherewa
i;n andwLS

i;n are weights satisfying the following
condition:
Condition 3: 0 � wa

i;n; w
LS
i;n � 1; there exists
 > 0 such

that for alln > 0,

1

n

nX
i=1

(wa
i;n + wLS

i;n) � 
 (3.18)

Remark 3.1 The condition above allows both the analytic
center approach and the LS approach as special cases. It
also accommodates exponential forgetting factors, i.e., the
weights decay exponentially in reverse time. The member-
ship set for�̂ in (3.18) is not explicitly defined. In fact, this
set is simply defined by the constraints(yi � qTi �̂)

2 < 1 for
thosei at whichwa

i;n 6= 0.

Since the function to be minimized in (3.18) is strictly
convex, the optimal solution�mn is implicitly given by

1

n

nX
i=1

�
wa
i;n

qi(yi � qTi �
m
n )

1� (yi � qTi �
m
n )2

+ wLS
i;nqi(yi � qTi �

m
n )

�
= 0

(3.19)
We again obtain a good asymptotic performance.

Theorem 3.1 Suppose Condition 3 holds. Then the mixed
center�mn has the following convergence property:

jj�mn � �jj �








 
1

n

nX
i=1

�
wa
i;n

1� v2i
+ wLS

i;n

�
qiq

T
i

!�1






�






 1n
nX
i=1

�
2wa

i;n

1� v2i
+ wLS

i;n

�
viqi






 (3.20)

In particular, �mn ! � asn ! 1 if Condition 1 holds and
that

lim
n!1

1

n

nX
i=1

�
2wa

i;n

1� v2i
+ wLS

i;n

�
viqi = 0 (3.21)

Conversely, if�mn ! � asn!1, then (3.21) must hold.

Proof: The proof is rather lengthy, and will be included in
the full version of the paper.

Because the analytic center part contributes significantly
to the computation, it is desirable to keep the number of
nonzero termswa

i;n as little as possible. One option is to
keep only a few terms corresponding to the most recent
sampling points. The second option is to keep those weights
which correspond to large(yi�qTi �

m
n�1)

2. The third option,
which is to be exploited below, is simply to begin with an
analytic center estimator and then switch to a LS estimator
when the estimate starts to converge.

To elaborate this last option further, we assume zero
mean and independence of the noise (not necessarily iden-
tical distributions). Then, the covariance of the LS estimate
error

Cov(�LS
n � �) = R�1n

1

n2

nX
i=1

nX
k=1

qiq
T
k E(vivk)R

�1

n

where

Rn =
1

n

nX
i=1

qiq
T
i

Denote
�2 = max

i
E(v2i )

E(v2i ) =

Z 1

�1

x2pi(x)dx



andpi(x) is the probability density function forvi. Then,

Cov(�LS
n � �) =

�2

n

 
1

n

nX
i=1

qiq
T
i

!�1
�

�2

�n
I (3.22)

Note that�2 � 1 becausejvij < 1 andZ
1

�1

x2pi(x)dx �

Z
1

�1

pi(x)dx � 1:

Thus, Cov(�LSn � �) � 1

�n
I and

E(k�LSn � �k2) = TracefCov(�LSn � �)g �
m

�n
:

wherem is the dimension of�.
Consequently, for any given� > 0 and� > 0, we com-

pute the switch iterationn

n �
m

���2
(3.23)

so by the Chebyshev inequality, we obtain

Probfk�LSn � �k � �g �
E(k�LSn � �k2)

�2
�

m

�2�n
� �:

(3.24)
In other words, with probability at least1 � �, the LS

estimate is�-close to the true� provided (3.23) is satisfied.
Thus, we can safely switch the estimate from analytic center
to least squares.

4. SIMULATION EXAMPLE

The simulation example is a second order system

yi = (ui; ui�1)

�
a

b

�
+ vi

where the unknown parameter vector� =

�
a

b

�
=

�
5
5

�
,

the disturbancevi’s are independent random variables uni-
formly in the interval[0:95; 0:95] and the input sequence
fuig = f1; 0; 1; 0; :::g. Subsequently, both Conditions 1
and 2 are satisfied. Figure 4 shows the membership sets,
the analytic center estimates and the least squares estimates.
The least squares estimates are computed using a standard
recursive formula with initial estimate�LS

0 = (4; 4)T and
inverse covariance matrixP (0) = I .

Several observations are in order. First, we note that a
least squares estimate is poorer than the analytic center esti-
mate in the sense that it may lie outside of the membership
sets, e.g. whenn = 15 and25. In contrast, the analytic cen-
ter, by definition, always lies inside of the membership set.
Secondly, Asn increases, both estimates converge to the
true parameter. Therefore, it is desirable to start with the
analytic center for a good transient performance and then
switch to the least squares for numerical efficiency. This can
be done by adjusting the weights in the mixed approach.
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Figure 1: Membership sets(- - n=10, -.- n=15, solid n=25),
Analytic Center(+ n=10, x n=15, * n=25) and RLS(o at
n=1,4,7,10,13,15,18,22,25)


