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ABSTRACT

The problem of passivity analysis finds important applica-
tions in many signal processing systems such as digital quan-
tizers, decision feedback equalizers and digital and analog
filters. This paper considers the passivity analysis problem
for a large class of systems which involve uncertain pa-
rameters, time delays, quantization errors, and unmodeled
high order dynamics. By characterizing these and many
other types of uncertainty using a general tool called inte-
gral quadratic constraints (IQCs), we present a solution to
the problem of robust passivity analysis. More specifically,
we determine if a given uncertain system is robustly passive.
The solution is given in terms of the feasibility of a linear
matrix inequality (LMI) which can be solved efficiently.

1. INTRODUCTION

The notion of passivity plays an important role in design
and analysis of signal processing systems. For example, it
is well-known that suppression of limit cycles of a digital
quantizer requires certain dynamic part of the system to be
passive [6]. Another example where passivity analysis finds
important use is the so-called decision feedback equaliza-
tion (DFE) problem. It is known [5] that a decision feedback
equalizer guarantees finite error recovery if certain passivity
condition is satisfied.

Many signal processing systems are feedback systems
consisting of both a linear time-invariant (LTI) dynamic part
and a nonlinear and/or time-varying part. For example, a
differential pulse-code modulation (DPCM) system involves
a linear predictor and a quantizer. Time-varying filters are
popularly used in multirate signal processing. Nonlinear
and time-varying systems also arise in many adaptive filter-
ing problems. Passivity analysis is a major tool for studying
stability of such systems, especially for high order systems.

The motivation for our paper stems from the fact that,
in many applications, the system (or subsystem) which is
required to be passive is not a simple LTI transfer function,
rather it involves additional uncertainty. For example, in
adaptive DPCM (ADPCM) or adaptive DFE, the filter coef-
ficients are subject to time variations. Even in non-adaptive

cases, filter coefficients are also subject to quantization ef-
fects. Other types of uncertainty include unknown time-
delays in a communication channel, variations in analog
components, and unmodeled high order dynamics. Note
that if there exists no uncertainty, checking if an LTI dy-
namic system is passive or not is a simple matter. However,
for uncertain systems the problem becomes much more in-
volved.

In this paper, we use the so-called integral quadratic
constraints (IQCs) introduced in [7] to describe uncertain
components. The IQCs encompass all of the commonly en-
countered types of uncertainty mentioned earlier. Our main
result is a sufficient condition for guaranteeing an uncertain
system to be robustly passive. This sufficient condition is
expressed in terms of a linear matrix inequality (LMI) which
can be solved efficiently. We also study a digital quantizer
to demonstrate our result.

2. PASSIVITY ANALYSIS

Definition 2.1 (Passivity) An operatorH: `e2 ! `e2, is
calledpassiveif there exists� such that

TX
t=0

(Hu(t))
0

u(t) � �; 8u 2 `e2; T > 0 (2.1)

Similarly,H is calledstrictly passiveif there exist� > 0
and� such that

TX
t=0

(Hu(t))
0

u(t) � � + �

TX
t=0

u(t)
0

u(t); 8u 2 `e2; T > 0

(2.2)
WhenH is a linear time-invariant (LTI) real operator and
it is passive (resp. strictly passive), its transfer function is
calledpositive real(PR) (resp.strictly positive real(SPR)).

Consider the feedback system depicted in Figure 1, where
H1 is an LTI operator andH2 is a (possibly) nonlinear op-
erator. The lemma below gives a sufficient condition for
`2-stability (or stability for short).
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Figure 1: Interconnected Feedback System

Lemma 2.1 SupposeH1 is linear and strictly passive and
H2 is passive. Then, the mapping from(r; d) to (w; v) is
`2-stable, i.e.,(w; v) has a bounded̀2 norm should(r; d)
do.

Proof: See [3, p. 182] and [5].

Consider the following uncertain system:

x(t + 1) = Ax(t) +Bw(t) +

pX
i=1

F1i�i(t) (2.3)

y(t) = Cx(t) +Dw(t) +

pX
i=1

F2i�i(t) (2.4)

zi(t) = E1ix(t) +E2iw(t) +E3i�(t); (2.5)

i = 1; 2; : : : ; p

wherex(t) 2 Rn is the state,w(t) 2 Rq is the exogenous
input,y(t) 2 Rq is the output,zi(t) 2 Rki , i = 1; 2; : : : ; p,
are fictitious outputs, and�i(t) 2 Rki , i = 1; 2; : : : ; p, de-
note uncertain variables which satisfy the following integral
quadratic constraints (IQCs):

lim
T!1

TX
t=0

(k�i(t)k
2�kzi(t)k

2) � 0; i = 1; 2; : : : ; p: (2.6)

In the above,A;B;C;D; F1i; F2i; E1i; E2i andE3i are con-
stant matrices of appropriate dimensions. Note that a sum is
used in (2.6), but the term IQC was originated in continuous-
time systems where an integral is used rather.

Remark 2.1 The uncertainty represented by the IQCs (2.6)
is very general. It includes time-delays, quantization errors,
uncertain parameters, unmodeled dynamics, and many non-
linear and/or time-varying components; see [4].

Definition 2.2 The uncertain system (2.3)-(2.6) is called ro-
bustly passive (resp. robustly strictly passive) if it is passive
(resp. strictly passive) for all admissible uncertainty.

Our objective is to analyze the robust strict passivity of
the uncertain system (2.3)-(2.6). Before proceeding further,

we introduce the following short-hand notation:

F1 = [F11 : : : F1p]; F2 = [F21 : : : F2p]

E1 = [E
0

11 : : : E
0

1p]
0

; E2 = [E
0

21 : : : E
0

2p]
0

;

E3 = [E
0

31 : : : E
0

3p]
0

� = (�1; : : : ; �p); �i 2 R;

J = diagf�1Ik1 ; : : : ; �pIkpg (2.7)

Lemma 2.2 The uncertain system of (2.3)-(2.6) is robustly
strictly passive if there exist a symmetric positive definite
matrixP 2 Rn�n and scaling parameters�1; : : : ; �p > 0
such that the following condition holds for some� > 0:

(Ax +Bw +

pX
i=1

F1i�i)
0

P (Ax+Bw +

pX
i=1

F1i�i)

�x
0

Px� 2w
0

y + 2�w
0

w +
pX

i=1

�i(kE1ix+E2iw +E3i�k
2 � k�ik

2) < 0 (2.8)

for all x 2 Rn; w 2 Rq and �i 2 Rki , i = 1; 2; : : : ; p,
such that[x

0

; w
0

; �
0

1; : : : ; �
0

p] 6= 0.

Proof: Let V (x) = x
0

Px and sum the inequality of (2.8)
from 0 toT along any trajectory of (2.3). Then, we have

V [x(T + 1)]� V [x(0)] + 2�
TX
t=0

w
0

(t)w(t)

+

pX
i=1

�i

(
TX
t=0

kE1ix(t) +E2iw(t) +E3i�(t)k
2

�

TX
t=0

k�i(t)k
2

)
� 2

TX
t=0

w
0

(t)y(t) � 0

It follows that

TX
t=0

w
0

(t)y(t) � �
1

2
V [x(0)] + �

TX
t=0

w
0

(t)w(t)

+
1

2

pX
i=1

�i

(
TX
t=0

kE1ix(t) +E2iw(t) +E3i�(t)k
2

�

TX
t=0

k�i(t)k
2

)

for all T � 0. Now takeT !1. By considering (2.6) and
noting the fact that�1; : : : ; �p > 0, we have

1X
t=0

w
0

(t)y(t) � �
1

2
V [x(0)] + �

1X
t=0

w
0

(t)w(t)

That is, the system (2.3)-(2.6) is robustly strictly passive.

Now we present the main result of this paper.



Theorem 2.1 Consider the uncertain system of (2.3)-(2.6).
The following conditions, all guaranteeing the system to be
robustly strictly passive, are equivalent:

(a) There existsP = P
0

> 0 such that (2.8) holds;
(b) For someJ > 0 of (2.7) , there existsP = P

0

> 0
such that 2

4 L11 L12 L13

L
0

12 L22 L23

L
0

13 L
0

23 L33

3
5 < 0 (2.9)

where

L11 = A
0

PA� P +E
0

1JE1

L12 = A
0

PB � C
0

+E
0

1JE2

L13 = A
0

PF1 +E
0

1JE3

L22 = �(D +D
0

�B
0

PB �E
0

2JE2)

L23 = B
0

PF1 � F2 +E
0

2JE3

L33 = F
0

1PF1 +E
0

3JE3 � J

(c)A is stable and for someJ > 0, the following auxil-
iary system is strictly positive real:

xa(t+ 1) = Axa(t) + [B F1 0]wa(t) (2.10)

ya(t) =

2
4 C

0
�JE1

3
5xa(t)

+

2
4 D F2 0

0 1
2J 0

�JE2 �JE3
1
2J

3
5wa(t) (2.11)

Moreover, the set of allJ satisfying (c) is convex, where
J is given in (2.7).

Proof: The proof uses Lemma 2.2 and some matrix in-
equality manipulations. The details are omitted.

Remark 2.2 Theorem 2.1 shows that the robust strict pas-
sivity of system (2.3)-(2.6) is guaranteed if the auxiliary sys-
tem (2.10)-(2.11) is strictly positive real for someJ > 0. It
can be observed that the inequality in (2.9) is jointly linear
in P andJ . Note that very efficient numerical algorithms
exist for solving LMIs, owing to the recent advancement in
interior point algorithms for convex optimization [2].

3. ILLUSTRATIVE EXAMPLE

Consider the overflow limit cycle problem associated with
the digital quantizer in Figure 2. LetG(z) be of the form:

G(z) =
0:0375(z2+ 0:6875z + 1)

z3 � 0:875z2 + (0:75 + �a)z � 0:625� �b

-r(n)+

��
��
�

-w(n)
G(z)

y(n)

� v(n)
Q

u(n)

6�

Figure 2: Digital Quantizer

where�a and�b represent quantization errors after the cor-
responding coefficients are coded with 4 bits. It is known
that

j�aj � 2�4; j�bj � 2�4

It can be easily checked that the nominal transfer func-
tionG0(z) ofG(z) (setting�a � 0 and�b � 0) is stable but
not SPR. Although the quantizer is passive, we are unable to
conclude even if the nominal quantizer is void of overflow
limit cycles.

To reduce the conservatism, we consider the transformed
system in Figure 3, where0 < � < 1 is a tuning parameter
andH(z) is any stable function withL1 norm less than or
equal to 1, i.e.,

1X
t=0

jh(t)j � 1 (3.12)

whereh(t) is the impulse response corresponding toH(z).
In addition, it is required that1 +H(z) is invertible.
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Figure 3: Transformed Quantizer System

It is easy to check that the lower block of Figure 3 reamins
passive while the upper block approaches(1+H(z))�1(1+
G(z)) when� ! 1. Therefore, the system in Figure 3
(hence the one in Figure 2) will not observe limit cycles if
(1 + H(z))�1(1 + G(z)) is SPR. Clearly, this is weaker
than requiringG(z) to be SPR because ifG(z) is indeed



SPR, one can simply chooseH(z) to be zero. The condi-
tion above is actually a special case of a more general result
studied by Zames and Falb [8] where the feedback block is
allowed to be a general monotone and odd function.

Next, letH(z) = �G0(z). We have
P
1

n=0 jh(t)j < 1
and

Ĝ0(z) = (1 +G0(z))=(1 +H(z))

is SPR. Hence, from the discussion above we conclude that
the system does not exhibit overflow limit cycles in the nom-
inal case.

Next, we analyze the effect of the quantization errors.
To this end, a state space realization for the transfer function

Ĝ(z) = (1 +G(z))=(1 +H(z))

is given by

x(k + 1) = (A+�A)x(k) +Bw(k) (3.13)

y(k) = Cx(k) +Dw(k) (3.14)

where

A =

2
4 0 1 0

0 0 1
0:6625 �0:7242 0:9125

3
5 ;

�A =

2
4 0 0 0

0 0 0
��a ��b 0

3
5 ; B =

2
4 0

0
1

3
5

C = [0:075 0:0516 0:075]; D = 1

Denote

F11 = F12 =
�
0 0 �2�4

�0
(3.15)

E11 = [1 0 0]; E12 = [0 1 0] (3.16)

F2i = 0; E2i = E3i = 0; i = 1; 2 (3.17)

Then, the uncertainty,�Ax(k), in the state equation (3.13)
can be represented by

�Ax(k) = F11�1 + F12�2

where
�i(k) = �izi(k); zi(k) = E1ix(k)

with j�ij � 1; i = 1; 2. Clearly,�i andzi satisfy the IQCs:

TX
t=0

�
k�ik

2 � kzik
2
�
� 0; i = 1; 2

We now apply Theorem 2.1 to check whetherĜ(z) is
SPR for any admissible quantization errors�a and�b. Ef-
ficient interior-point algorithms are available to solve (2.9);
see [2]. We obtain a solution

P =

2
4 0:7085 �0:5375 0:2134
�0:5375 1:1664 �0:5843
0:2134 �0:5843 0:8706

3
5 > 0;

J =

�
0:0422 0

0 0:0413

�
> 0

Hence, Theorem 2.1 guarantees that no overflow limit cy-
cles exist even when the quantization errors�a and�b are
present.

4. CONCLUSION

This paper has studied the problem of robust passivity anal-
ysis for a large class of uncertain systems with the uncer-
tainty described by integral quadratic constraints. LMI so-
lutions have been presented. In view of the recent devel-
opment in convex optimization, especially in solving LMIs
(see [2]), our results offer efficient solutions to these prob-
lems. Applications of these problems in signal processing
systems have been studied. In particular, we note that pas-
sivity analysis is an important tool in studying robust sta-
bility of signal processing systems involving nonlinear ele-
ments.
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