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ABSTRACT estimator converges almost surely to the theoreticalphR(

This work addresses the influence of point spectrum on |argespectrum assouategl with exgct cprrelatlon interval. .
sample statistics of the autoregressive spectral estimator. In Howgver,'one mlght well INquire as to the value of this
particular, the asymptotic distributions of the AR coeffi- resqlt, since In the' region of'pomt spectrum the ARhe.'
cients, the innovations variance, and the spectral densityoretlcal spectrum is ill-conditioned, in the sense that it be-

estimator of a finite order AR{ model for a mixed spec- COMeS unbounded as— oo [4]. One answer o this ques-

trum process are presented. Numerical simulations are perIlon is that if one has identified the point spectrum frequen-

formed to verify the analytical results cies, then the AR{) spectrum may still yield valuable in-
' formation sufficiently far from these frequencies. In fact, as

p — oo the AR(p) spectrum converges almost everywhere
1. INTRODUCTION to the continuous spectral density [5]. (As a side point, it

. . _ should be noted that all traditional model order selection
A mixed random process is one which includes both regular

o ules are inappropriate for AR models in this mixed spec-
and a deterministic components. The most popular class ot{

h is the cl in which the deterministi rum setting.) Perhaps a more important reason for investi-
Such processes IS the class in which the deterministic Com'gating the properties of AR spectral estimators in the mixed
ponent is a sum of sinusoids. This type of random process

: . o . ; o spectrum setting has to do with identification of point spec-
IS commonplacg N appllcatlonsmvo!vmg periodic phenom- trum. Since the theoretical AR spectrum has such dis-
ena. Examples include communication systems, blomedlcaltinctly different behavior at point spectrum frequencies, it

signal processing, atmospheric scienc.es{ and. rotatir]g mafnay be possible to take advantage of this for detection of
chinery. In .e.aCh 'example, one can easily |dent|f¥ partlcular point spectrum. This could be attempted directly, or in con-
.(;as.es Off crlﬂpaﬂ mpoga;ncs. Forhgxample, Condt'.t'c;r; mon: junction with the associated MYJ spectrum [12]. In any
'orng o fa '9 stpee fur o'macftmery IS eSSential Tor €n- case, a necessary first step for use of thejARpectral es-
suring safe operation ol an aircraft. timator in the mixed spectrum setting, either to estimate the

.In .fp'tef (f)f the m|xegl natgre of sluch proiﬁszes, thehvaStpower spectral density in a given region, or to detect point
majonity of frequency domain analysis methods, suc asspectrum, is to arrive at its large sample distributional prop-

FFT, AR, and ARMA methods rely on the erroneous as- erties. As noted above, [7] has obtained such a result for

sumption of a purely regular process. Autoregressive (AR) white noise. Here we extend it to the colored noise situa-
spectral analysis, in particular, has long been employed totion

model rggular 'sta}tlonary ranQom processes. For suph PrO" 11 this work, a mixed spectrum process is defined as
cesses, its statistical properties have been well studied. For

. ) ; Yn = T, + &,, Where
example, Brockwell and Davis [2] used linear regression to

establish various limiting results for AR model coefficients. q o0
Caines [3] applied convergence properties of martingale dif- =, = Z A cos(Wmn + ¢m),  &n = Z ViCn—j
ferences to derive a similar results. Percival and Walden [9], m=1 j=-c0

zggc?rz?gg(:ﬁ;tglg established confidence intervals for AR where{ A, 17 _, and{gm}?nzl c (03 ) are unknown con-
Several attempts had been made to generalize the propStaNtSHG Iz oo ~ i.d.d.(0,0¢) with B{G1} = oy <

erties of AR spectral analysis to a mixed spectrum process.>® 2 [¥i] < 00, {¢m},=y ~ i.i.d.U(0, 27] and indepen-

Sakai [10] derived the asymptotic variance of the fixeith dent of{(,,}. The theoretical autocovariancef is given

order AR spectral estimator by assuming that the estimationPY ¥ = 77 + 7%, where

error is small. Mackisak and Poskitt [7] considered the case 4 s 00

of a single sinusoid embedded in white noise. They showed = Z A cos(wm), e = Ug Z Uit

that for fixedp, the least squares-th order AR spectral

— 00



are the autocovariancesof ande,,, respectively. The-th
order autoregressive predictorgpf is

p
- g Ak Yn—k
k=1

with the prediction error varianc€{(y, — y.)’} = o.
The minimum variance parametet$ = [a1, az, -, a;]
which minimizeaf, are obtained by solving the Yule-Walker
equationsa,, , 'Y, ando? = r§ ++¥'a,, where the
(p x p) toeplitz matrery =[rl_ ]]Zyjzly...yp and the(p x 1)
vectorr? = [r{,---,r¥]". Let.S,(w) denote the minimum
variance ARf) spectrum and, (w) denote its least squares
estimator. Then

2 2
S (w) _ Tp A Tp
4 - ; 2 -
> ko are™ | |y ()]
N o2 o2
P(w) = P AP ik 2 é N £ 2
> k=0 are™ |Pp (@)

wherea, ands; are the least squares estimatorapfand
af,, resper:tively, obtarined by substitutirg by the sampl
autocovariance function defined by:

1N—T
= N Z Yn *Yntr -
n=1

In the next section, the large sample distributiona,afs?,
ands, (w) will be presented.

()

2. THEORETICAL RESULTS

The key to our analysis lies in the delta method for asymp-
totic analysis [2] and the limiting distribution of the sam-
ple autocovariance function [6]: Let] = [ry, - ;]
andr? be the corresponding finite sample estimator. Then

y

VN (@ —rY) < N(0, 2), whereX = [0ik]j k=0, pIS:
q 00
Ok = Z QAan cos(jwm ) cos(kwpm,) Z 7 cos(wmT)
m=1 T=—00

+ (K?—3)7“;7“Z—|— Z {rTrT-I—] k+r7+] T— k}

T=—00

Our first result is an equivalent frequency domain expres-
sion for the variance-covariance matBix

Lemma 1. If {, is Gaussian white noise:(= 3), the fre-

guency domain expression for the variance-covariance ma-

trix X of the limiting distribution of\/ﬁ(%

by:
/ {25 ) + Se(w

—rY)isgiven

I(w) fdw

where,
Spw) = 2rm Z %5(@0 + W)
Se(w) = Z reeTiTY
Fw) = ~wv(w)
~(w) = [1,cos(w),- - ,cos(pw)].

The large sample distribution &f, is given in Theorem 2.
Since it is done in a mixed spectrum setting, it presents an
extension of the corresponding result for continuous spec-
trum processes (see [2, 3, 9]).

Theorem 2.
\/N(dp —ap) — N( 0, \I’d,,)
where,¥;, = R, 'AS A'R,", and
[ ar as --- ap 0] [0 ap 0 0]
as agz - - 0 0 0 aj ap 0
N as aq - 0 0 0 as aj 0
A= +
ap—1 Ap - 0 0 0 ap—2 Ap_3 * 0
L Gp 0 0 0 _0 ap—1 Ap—2 - Ao

The limiting distribution of the error variance estima&jr
is given below.

Theorem 3. Definingy = [¢¢, 247, - - -
the convolution of---,0,a0,- -+, ,,0, -
verse at lagr. Then,

, 2951, whereg? is
-] with it’s re-

VN (o7 —op) =N —rf) o, (1) (@)
Hence,
VN (62— 02) <5 N(0, Wsz )

where\If&g = v'Xv. If {, is Gaussian white noise, the
frequency domain expression fmg,g can be expressed by
using Lemma 1 as:

}dw

02:—/4{25 W) + Se(w)] S

Theorems 2 and 3 are generalizations of the results in [2, 3,
9]. For the case wherg, = 0 ande,, is a causal AR{) pro-
cess of ordeg < p, Theorem 2 reduces N (a, —a,) KN
N(0, ¢2R;"). If, in addition,,, is causal Gaussian AR,

Theorem 3 reduces tgN (62 — o2) < N(0, 203).

The previous results set the stage for our ultimate goal
of this work, which is the asymptotic distribution of the AR
spectral estimatas, (w). To this end, we arrived at the fol-
lowing lemma.



Lemma 4. Table 1: Estimated and theoretical means

I [ -eer] o atences o onoalons aance
=2[Ay ()] VN(ay — ay) +0,(1)  (2) p E{o’} | N -Var{o?}
5 1.638 6.085
Thus, /N [[7, ()" = pp ()| =5 N(0, ¥, 12), where, (1.641)|  (5.420)
50 | 1.007 2.464
U, 2 = 4[Av(w)] BT AS AR, [Ax (w)] (1.062)|  (2.304)

Using (1) and (2), we arrived at the following result.
Table 2: Estimated and theoretical means and

Theorem 5. . .
variances of AR coefficients.
& d AR order AR coefficientsa
N|S, -5 N(O, ¥q
\/_[ P(w) p(w)] — ( ) Sp) p E{d} N~Var{d}
2 ) (0.092)| (0.497)| (0.143)| (0.370)
Sp (W 0.814 | 0.160 | 0541 | 0.386
R i Y 2 o, e . . .
¥s, = ol {Wo 45, (@05, = 25 (@) ¥ag 5,12} 5 (0.815)| (0.143)| (0.525)| (0.371)
V.. .= 9SS AR'A -0.015 0.402 0.386 0.778
%™ 1ol o y AV (-0.016)| (0.370)| (0.371)| (0.729)
Theorem 5 is the first result we know of that allows one to -0.273 1.229 | -0.347 1.151
study the theoretical statistical behavior of the ARgpec- (-0.272) | (1.016)| (-0.272)| (0.907)
tral estimator at signal frequencies. Unfortunately, it does 0.916 | -0.347 1.233 | -0.639
not offer immediate insight into this behavior. Therefore, at 50 (0.913)| (-0.272) | (1.060)| (-0.505)
this stage we will examine Theorem 5 via various simula- -0.010 1.151 | -0.639 2.286
tions. (-0.009) | (0.907)| (-0.505)| (1.890)

3. NUMERICAL SIMULAT'ON Means of spectra

30

N=1000, p=5

In this section, we verify our results via extensive numerical
simulations. Consider the mixed spectrum procgss—
z, +e,, Where

nmw n 3nm
x, = cos|— cos| —
2 4

en = 03,1 — 09e,_9 + (4
¢n ~ 4.4.d.N(0,1)

25F

Energy, dB

The signal-to-noise ratio equals to -7.3221 dB in this case.
Consider fitting ARf) models of ordep = 5 andp = 50 to
1000 realizations of the processch withV = 1000 sam-

ples. The simulation and theoretical means and variances o5 of 015 02 025 03 03 04 045 05
of &2 and of the first three elements @f are tabulated in Freauency, iz

Table 1 and Table 2, respectively. In either case, the theoret- Figure 1: Simulation and theoretical
ical values are enclosed in parenthesis. These results show spectral means fgr = 5.

small deviations between the simulation and theoretical val-
ues and verify the theoretical results.

The estimated means 6f(w) (dashed line) fop = 5 4. CONCLUSION
andp = 50 are plotted against the theoretical means (solid
line) in Figure 1 and Figure 2, respectively. That for the The large sample properties of an AR estimator for a reg-
estimated variances are plotted in Figure 3 and Figure 4.ular process with an unspecified continuous spectrum were
Again, there is a close match between the numerical andgeneralized to those for a stochastic process containing a
theoretical spectral means and variance. mixed spectrum. In the process, asymptotic normality of



the AR coefficients, innovation variances, and AR spectral

Means of spectra
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Figure 2: Simulation and theoretical
spectral means fqr = 50.
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Figure 3: Simulation and theoretical
spectral variances fgr= 5.
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estimate of a finite order autoregression were derived. Nu- [12]
merical simulations verified the reliability of the analytical
results.
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