
ASYMPTOTIC STATISTICAL PROPERTIES OF AUTOREGRESSIVE
MODEL FOR MIXED SPECTRUM ESTIMATION

Peter J. Sherman and Soon-Seng Lau

Iowa State University, Ames, IA 50010, U.S.A

ABSTRACT

This work addresses the influence of point spectrum on large
sample statistics of the autoregressive spectral estimator. In
particular, the asymptotic distributions of the AR coeffi-
cients, the innovations variance, and the spectral density
estimator of a finite order AR(p) model for a mixed spec-
trum process are presented. Numerical simulations are per-
formed to verify the analytical results.

1. INTRODUCTION

A mixed random process is one which includes both regular
and a deterministic components. The most popular class of
such processes is the class in which the deterministic com-
ponent is a sum of sinusoids. This type of random process
is commonplace in applications involving periodic phenom-
ena. Examples include communication systems, biomedical
signal processing, atmospheric sciences, and rotating ma-
chinery. In each example, one can easily identify particular
cases of critical importance. For example, condition mon-
itoring of a high speed turbomachinery is essential for en-
suring safe operation of an aircraft.

In spite of the mixed nature of such processes, the vast
majority of frequency domain analysis methods, such as
FFT, AR, and ARMA methods rely on the erroneous as-
sumption of a purely regular process. Autoregressive (AR)
spectral analysis, in particular, has long been employed to
model regular stationary random processes. For such pro-
cesses, its statistical properties have been well studied. For
example, Brockwell and Davis [2] used linear regression to
establish various limiting results for AR model coefficients.
Caines [3] applied convergence properties of martingale dif-
ferences to derive a similar results. Percival and Walden [9],
and Baggeroer [1] established confidence intervals for AR
spectral estimator.

Several attempts had been made to generalize the prop-
erties of AR spectral analysis to a mixed spectrum process.
Sakai [10] derived the asymptotic variance of the fixedp-th
order AR spectral estimator by assuming that the estimation
error is small. Mackisak and Poskitt [7] considered the case
of a single sinusoid embedded in white noise. They showed
that for fixedp, the least squaresp-th order AR spectral

estimator converges almost surely to the theoretical AR(p)
spectrum associated with exact correlation interval.

However, one might well inquire as to the value of this
result, since in the region of point spectrum the AR(p) the-
oretical spectrum is ill-conditioned, in the sense that it be-
comes unbounded asp !1 [4]. One answer to this ques-
tion is that if one has identified the point spectrum frequen-
cies, then the AR(p) spectrum may still yield valuable in-
formation sufficiently far from these frequencies. In fact, as
p ! 1 the AR(p) spectrum converges almost everywhere
to the continuous spectral density [5]. (As a side point, it
should be noted that all traditional model order selection
rules are inappropriate for AR models in this mixed spec-
trum setting.) Perhaps a more important reason for investi-
gating the properties of AR spectral estimators in the mixed
spectrum setting has to do with identification of point spec-
trum. Since the theoretical AR(p) spectrum has such dis-
tinctly different behavior at point spectrum frequencies, it
may be possible to take advantage of this for detection of
point spectrum. This could be attempted directly, or in con-
junction with the associated MV(p) spectrum [12]. In any
case, a necessary first step for use of the AR(p) spectral es-
timator in the mixed spectrum setting, either to estimate the
power spectral density in a given region, or to detect point
spectrum, is to arrive at its large sample distributional prop-
erties. As noted above, [7] has obtained such a result for
white noise. Here we extend it to the colored noise situa-
tion.

In this work, a mixed spectrum process is defined as
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xn =

qX
m=1

Am cos(!mn + �m); "n =
1X

j=�1

 j�n�j

wherefAmgqm=1 andf!mgqm=1 2 (o; �) are unknown con-
stants,f�ng1n=�1 � i:i:d:(0; �2�) with Ef�4ng = ��4� <

1,
P j jj < 1, f�mgqm=1 � i:i:d:U(0; 2�] and indepen-

dent off�ng. The theoretical autocovariance ofyn is given
by ry� = rx� + r"� , where

rx� =

qX
m=1

A2
m

2
cos(!m� ); r"� = �2�

1X
j=�1

 j j+�



are the autocovariances ofxn and"n, respectively. Thep-th
order autoregressive predictor ofyn is

ŷn = �
pX

k=1

ak � yn�k

with the prediction error varianceEf(ŷn � yn)
2g = �2p.

The minimum variance parametersa0p = [a1; a2; � � � ; ap]
which minimize�2p are obtained by solving the Yule-Walker
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y
0+r

y 0ap, where the
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variance AR(p) spectrum and̂Sp(!) denote its least squares
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whereâp and�̂2p are the least squares estimators ofap and
�2p, respectively, obtained by substitutingry� by the sample
autocovariance function defined by:

r̂y� =
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In the next section, the large sample distributions ofâp, �̂2p,

andŜp(!) will be presented.

2. THEORETICAL RESULTS

The key to our analysis lies in the delta method for asymp-
totic analysis [2] and the limiting distribution of the sam-
ple autocovariance function [6]: Letryp = [ry0 ; � � � ; ryp ]0,
andr̂yp be the corresponding finite sample estimator. Thenp
N(r̂yp � ryp) d�! N(0;�), where� = [�jk]j;k=0;::: ;p is:
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Our first result is an equivalent frequency domain expres-
sion for the variance-covariance matrix�.

Lemma 1. If �n is Gaussian white noise (� = 3), the fre-
quency domain expression for the variance-covariance ma-
trix � of the limiting distribution of

p
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The large sample distribution of̂ap is given in Theorem 2.
Since it is done in a mixed spectrum setting, it presents an
extension of the corresponding result for continuous spec-
trum processes (see [2, 3, 9]).
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The limiting distribution of the error variance estimator�̂2p
is given below.

Theorem 3. Defining� = [ga0 ; 2g
a
1; � � � ; 2gap], wherega� is

the convolution of[� � � ; 0; a0; � � � ; ap; 0; � � � ] with it’s re-
verse at lag� . Then,
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Theorems 2 and 3 are generalizations of the results in [2, 3,
9]. For the case wherexn = 0 and"n is a causal AR(q) pro-

cess of orderq � p, Theorem 2 reduces to
p
N(âp�ap) d�!

N(0; �2�R
�1
y ). If, in addition,"n is causal Gaussian AR(q),

Theorem 3 reduces to
p
N (�̂2p � �2� )

d�! N(0; 2�4�).

The previous results set the stage for our ultimate goal
of this work, which is the asymptotic distribution of the AR
spectral estimator̂Sp(!). To this end, we arrived at the fol-
lowing lemma.
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Using (1) and (2), we arrived at the following result.
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Theorem 5 is the first result we know of that allows one to
study the theoretical statistical behavior of the AR(p) spec-
tral estimator at signal frequencies. Unfortunately, it does
not offer immediate insight into this behavior. Therefore, at
this stage we will examine Theorem 5 via various simula-
tions.

3. NUMERICAL SIMULATION

In this section, we verify our results via extensive numerical
simulations. Consider the mixed spectrum processyn =
xn + "n, where

xn = cos

�
n�

2

�
+ cos

�
3n�

4

�

"n = 0:3"n�1 � 0:9"n�2 + �n

�n � i:i:d:N(0; 1)

The signal-to-noise ratio equals to -7.3221 dB in this case.
Consider fitting AR(p) models of orderp = 5 andp = 50 to
1000 realizations of the process,each withN = 1000 sam-
ples. The simulation and theoretical means and variances
of �̂2p and of the first three elements ofâ2p are tabulated in
Table 1 and Table 2, respectively. In either case, the theoret-
ical values are enclosed in parenthesis. These results show
small deviations between the simulation and theoretical val-
ues and verify the theoretical results.

The estimated means of̂S(!) (dashed line) forp = 5
andp = 50 are plotted against the theoretical means (solid
line) in Figure 1 and Figure 2, respectively. That for the
estimated variances are plotted in Figure 3 and Figure 4.
Again, there is a close match between the numerical and
theoretical spectral means and variance.

Table 1: Estimated and theoretical means
and variances of innovations variance.

AR order Innovations variance,̂�2

p Ef�̂2g N � V arf�̂2g
5 1.638 6.085

(1.641) (5.420)

50 1.007 2.464
(1.062) (2.304)

Table 2: Estimated and theoretical means and
variances of AR coefficients.

AR order AR coefficients,̂a
p Efâg N � V arfâg

0.092 0.535 0.160 0.402
(0.092) (0.497) (0.143) (0.370)
0.814 0.160 0.541 0.386

5 (0.815) (0.143) (0.525) (0.371)
-0.015 0.402 0.386 0.778

(-0.016) (0.370) (0.371) (0.729)

-0.273 1.229 -0.347 1.151
(-0.272) (1.016) (-0.272) (0.907)

0.916 -0.347 1.233 -0.639
50 (0.913) (-0.272) (1.060) (-0.505)

-0.010 1.151 -0.639 2.286
(-0.009) (0.907) (-0.505) (1.890)
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Figure 1: Simulation and theoretical
spectral means forp = 5.

4. CONCLUSION

The large sample properties of an AR estimator for a reg-
ular process with an unspecified continuous spectrum were
generalized to those for a stochastic process containing a
mixed spectrum. In the process, asymptotic normality of
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Figure 2: Simulation and theoretical
spectral means forp = 50.
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Figure 3: Simulation and theoretical
spectral variances forp = 5:

the AR coefficients, innovation variances, and AR spectral
estimate of a finite order autoregression were derived. Nu-
merical simulations verified the reliability of the analytical
results.

5. REFERENCES
[1] Baggeroer, A.B. “Confident interval for regression (MEM) spectral

estimates.”IEEE Trans. IT, 22, 534–545, 1976.

[2] Brockwell, P.J. and Davis, R.A.Time Series: Theory and Methods.
2nd ed., Springer-Verlag, New York, 1991.

[3] Caines, P.E.Linear Stochastics Systems.John Wiley & Sons, Inc.
1988.

[4] Foias, C., Frazho, A., and Sherman, P. “A geometric approach to
the maximum likelihood spectral estimator for sinusoids in noise.”
IEEE Trans. IT, 34(5), 1066–1070, Sept. 1988.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−40

−30

−20

−10

0

10

20

30

40

50

Frequency, Hz

E
n

e
rg

y
, 
d

B

Variances of spectra

N=1000, p=50

Figure 4: Simulation and theoretical
spectral variances forp = 50.

[5] Grenander, V. and Szego, G.Toeplitz Forms and Their Applications.
Univ. of California Press, Berkeley, 1958.

[6] Li, T.H., Kedem, B. and Yakowitz, S. “Asymptotic normality of
sample autocovariances with an application in frequency estima-
tion.” Stoc. Process, Appl., 52, 329–349, 1994.

[7] Mackisack, M. and Poskitt, D.S. “Some properties of autoregressive
estimates for processes with mixed spectra.”J. Time Series Anal.,
11(4), 325–337, 1990.

[8] Marple, L.S.Digital Spectral Analysis with Applications.Prentice
Hall, 1987.

[9] Percival, D.B. and Walden, A.T.Spectral Analysis for Physical Ap-
plications: Multitaper and Conventional Univariate Techniques.
Cambridge University Press, Great Britain, 1993.

[10] Sakai, H. “Statistical properties of AR spectral analysis.”IEEE
Trans. ASSP, 27(4), 402–409, Aug. 1979.

[11] Sherman, P., White, L., W., Spanjaard, J., and Bitmead R. “Asymp-
totic statistics of AR spectral estimators for processes containing
mixed spectrum.”8th IEEE Sig. Process. Workshop on Stat. Array
Process, Corfu, Greece, 48–51, 1996.

[12] Sherman, P. and Lou, K.L. “On the family of ML spectral estimates
for mixed spectrum identification.”IEEE Trans. ASSP, 39(3), 644–
655, March 1991.


