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ABSTRACT
This paper deals with robust speech recognition in the GSM
mobile environment. Our focus is on the voice degradation due to
the losses in the GSM coding scheme. Thus, we initially propose
an experimental framework of network topologies that consists
of various coding-decoding systems placed in tandem. After
measuring the recognition performance for each of these network
scenarios, we try to increase recognition accuracy by using
feature compensation and model adaptation algorithms. We first
compare the different methods for all the network topologies
assuming the topology is known. We then investigate the more
realistic case, in which we don’t know the network topology the
voice has passed through. The results show that robustness can
be achieved even in this case.

1. INTRODUCTION

Long distance telephone connections are established using a
multitude of terrestrial or wireless telecommunication circuits.
Each one of them utilizes a different coding scheme and a
different coding rate and a telephone session is formed by the
tandeming of these different systems. In the past there have been
several efforts to evaluate the voice quality of such tandem
connections and scenarios using the subjective 5-point Mean
Opinion Score (MOS) transmission quality measure [1][2].
However, we focus on the problem of having a speech recognizer
at the receiver instead of a human being, where the different
tandeming connections affect recognition accuracy dramatically.

We have investigated recognition performance in a number of
different network configurations of the GSM environment. Each
network scenario corresponds to a different acoustic environment
that the recognizer must deal with. These scenarios were
simulated in software and comprised transport over ITU-T G.711
64 Kbps PCM channels, G721 32kbps and G.723 16 kbps
ADPCM and full rate RPE-LTP GSM 13 kbps speech encoders.

Scenario 1 refers to three GSM RPE-LTP encoders connected in
tandem. We assume that this is the maximum number of GSM
encoders that can be placed in tandem and this schema yields the
greatest degradation (worst case). Indeed in practice, it has been
shown that careful network planning should avoid placing more
than 3 GSM encoders in tandem [8]. Topology 2 reflects the case
where both transmitter (user) and receiver (recognizer) utilize
GSM encoding. Topology 3 refers to the simple case where the
user is mobile and the recognizer is accessed via conventional
wireline connection (PCM). In international telephone
connections Digital Circuit Multiplication Equipment (DCME)
technology based on ITU-T G.726 32 Kbps ADPCM codecs is

used [3]. Topology 4 is the case of an international call where we
have DCME 16kbps for the international network, DCME 32
Kbps for the national network  and finally GSM termination for
the receiver. Topologies 5 and 6 are simpler cases where we
employ only 32 kbps DCME technology for the international
network.

Figure 1: Network topologies for the tandeming of
various encoders

2. COMPENSATION TECHNIQUES

When the recognizer is trained under a different acoustic
environment than the one in which it is being tested, the
mismatch affects its recognition accuracy. To overcome this
acoustic mismatch, several compensation techniques have been
devised. In our investigation we used two approaches, namely the
Probabilistic Optimum Filtering (POF) algorithm [4] and
adaptation techniques [5]-[7].

The POF algorithm is a mapping algorithm that is trained by
using simultaneous recordings of noisy and clean data. After
training, the mapping is applied to incoming noisy speech feature
vectors to produce estimated “clean” speech feature vectors that
are recognized by the recognizer afterwards.

Adaptation techniques are “model oriented”, that is they attempt
to adapt the recognizer model parameters to the incoming noisy
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data. We assume that the vector process { }y t
, that corresponds

to the new acoustic GSM environment, can be obtained from

{ }xt , the stochastic process that corresponds to the initial

“clean” model, by the relation:

y A x bt g t g= + ,

where the A bg g g N g, , , ... ,= 1  are matrices used to

transform the means and variances of  the Gaussians of the initial
(“clean”) model. (Ng is the number of transformations). The
index g depends on the hidden Markov model (HMM) state used
at time t. We used this technique in two different variations:

Method I: In this method [5], the matrix A g  is diagonal, and is

applied to both the means and variances of the HMM Gaussians.

Method II: Here, the matrix A g  is block diagonal, and only the

means are transformed while the variances remain the same
(MLLR, [7]).

3. EXPERIMENTS
The recognizer used throughout our experiments is SRI’s
DECIPHER phonetically tied-mixture speech recognition system
[9-10]. The signal processing consists of a filterbank-based front-
end that generated six feature streams: the cepstrum (c1-c8), the
cepstral energy (c0), and their first and second order derivatives.
The dimension of the final feature vector is 27 (3*9) because we
are dealing with telephone bandwidth data. To evaluate our
algorithms we used the air-travel information domain (ATIS)
with data collected over the telephone network. A bigram
language model was used for all our experiments.

The POF algorithm was trained by simultaneous recordings of
PCM 64-kbit speech (this is referred as the “clean speech”) and
“noisy speech”, that has passed from the various tandeming
network topologies. The same set of training data was used in the
model adaptation techniques.

The initial models of the recognizer have been trained with clean
speech data using a large collection of hundreds of thousands
sentences taken from several databases. The POF mapping
models were trained using a set of 400 sentences of male-female
speakers, taken from SRI’s stereo ATIS database. The test set
consists of 210 sentences taken from the same database.

As a performance indicator for our recognizer we used the Word
Error Rate, that is the percentage of words that were
‘erroneously’ recognized. ‘Erroneously’ means that the
recognizer has added, deleted or replaced some of the words that
have been spoken in the initial sentence. Thus:

WER
INS DEL SUB

TOTAL
=

+ +
× 100%

3.1. POF Experiments

We first measured the recognition error in the matched condition,
that is the error of the recognizer trained on clean speech and
tested on clean speech. We also measured the recognition error
for the mismatched case of different scenarios, which is the error
of  the “clean” recognizer on speech data which have passed
from this scenario. These error rates can be considered as lower
and upper bounds in the recognition performance of any
compensation algorithm, and for the GSM3 (topology 1) data are
summarized in Table 1.

Table 1: Lower and upper recognition bounds for  the
GSM3 topology

Given these limits, we tried to apply the compensation
techniques in order to improve the recognition performance in
the mismatched case of the GSM3 topology.

The parameters controlling the POF algorithm were actually the
number of Gaussian distributions that define the number of the
VQ regions used in the mapping algorithm ( actually each
Gaussian models one of the VQ regions that comprise the
acoustic space), and the delay that defines the number of

neighbouring frames  of the noise frameYn that are taken into

account when estimating the clean vector 
)xn .

POF compensation results
# of Gaussians

Delay 5 10 50
0 19.3 18.9 18.8
1 18.0 18.2 18.2
2 18.8 18.7 19.0

Table2 : Recognition error rates for the GSM3 topology
using the POF algorithm

We see that the error does not decrease as the number of
Gaussians (VQ regions modeling the acoustic space) increases.
Moreover, the increasing delay does not seem  to affect the
recognition error. Similar  results were obtained for the other
topologies that we examined. Our conclusion is that the GSM
noise does not follow some specific noise pattern that the POF
algorithm can model efficiently by using more Gaussians. Even
if the recognition error generally decreased from the 23.75%
upper limit, it was not possible to find a specific pair of
parameters (delay, #of Gaussians) that yield the best result in
every case.

3.2. Adaptation Experiments

After POF, we used the transform adaptation method on the same
training and test data with POF. We used variations I and II for

Test Data
Clean GSM3

(%Error) 13.30 23.75



N g = 2 5 10 20 30 41, , , , , . The results for the GSM3 data, are

summarized in Table 3. We observe that method I outperforms
method II. The reason is that method I changes the variances of

the model’s Gaussian mixtures. The transform matrix A g  for

method I had coefficients greater than unity, indicating that the
variances of the adapted models were increased.

Transform Adaptation results
Number of transforms

Meth. 2 5 10 20 30 41
I 18.7 18.3 17.3 17.8 18.7 19.1

II 20.6 20.6 21.3 22.4 22.0 22.0

Table  3: Recognition error rate for adaptation methods
I, II (MLLR) and for different numbers of
transformations.

This corresponds to smoother phoneme representations of the
adapted HMM models, rendering them more robust to the GSM

noise. Moreover, by observing the A g  matrix, some phoneme

classes benefited from a greater increase in the Gaussians’
variance. This effectively shows that certain identifiable classes
of phonemes are more severely affected from the noise in GSM
encoding. Since variance compensation plays such a significant
role, MLLR didn’t work well in this case.

Another observation stems from the fact that there is a minimum

error rate (17.23%) for N g = 10 . Further experimentation

with the remaining  topologies indicated that N g = 10  is the

selection that yields the maximum error rate reduction.

In general, adaptation method I achieved lower error rates than
POF, as we can see in Figure 2 which extends the previous
experiment to the rest of the network topologies. Topology 3 is
omitted, since the uncompensated error rate in this case is 14.5%,
not significantly higher compared to the lower limit (13.3%).

The first bar in each topology shows the uncompensated error,
the second the error using POF compensation, and the third using

method I with N g = 10 .

3.3. The “Cocktail” transform

All previous experiments assumed knowledge of  the noise
environment that caused voice degradation. For each case, we
trained our transforms in the corresponding acoustic space. In
realistic scenarios, however, we don’t know the network
topology that caused the degradation. A solution to this problem
is to train the recognizer’s models with data collected from all six
network topologies. Thus, we adapted the initial models of the
recognizer using 400 training sentences equally distributed over
all six different topologies. The results of this “cocktail”
transformation training tested under each topology are
summarized in Table 4. We used adaptation method I with

N g = 10  transformations.

The results of  the “cocktail” training are surprisingly very close
to those that were obtained in the previous “best” case where
training and testing environments are matched. This fact provides
an even stronger argument for choosing adaptation method I to
cancel the GSM noise.

Test
Train

Clean [1] [2] [4] [5] [6]

Clean 13.3 23.75 18.55 18.49 15.38 19.14
[1] 17.32

[2] 16.57

[4] 17.69

[5] 14.26

[6] 16.51
Cocktail 13.19 17.96 15.66 16.94 13.99 17.05

Table 4 : Error rates corresponding to all the topologies
with matching training and testing acoustic environments
as opposed to the “Cocktail” training results.

Adaptation method I acts in our case as a phone- and feature-
dependent variance smoothing scheme. To further elaborate on
this, we present in Table 5 the first few diagonal elements of the
transformation matrix A for each one of the ten groups of phones
that were determined using clustering. Since matrix A pre- and
post-multiplies the covariance matrix in adaptation method I, the
variances of a particular cepstral coefficient are multiplied by the
square of the value of the corresponding element of the
transformation matrix. Values of the matrix elemens greater than
one imply an increase in variance and smoothing of the
corresponding distribution. For example, we can see in Table 5
that the variance of the first cepstral coefficient is increased (and
hence, the corresponding distribution smoothed) more for vowels
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Figure 2 : Cumulative results for all the topologies



than for consonants. Similarly, the opposite is true for the fourth
cepstral coefficient.

Phone Cluster C1 C2 C3 C4

s z sh zh ch jh th f hh 0.95 1.03 0.99 1.08

d dh dx t 1.02 1.02 1.03 1.07

b v p 1.02 1.05 1.01 1.05

l el r er 1.04 0.99 0.99 1.02

g k 1.04 1.03 1.01 1.07

w uw aw ow 1.05 0.99 1.00 1.03

aa ao ae ah ax eh ih 1.05 0.99 1.03 1.02

m em n en ng 1.05 1.02 0.98 1.03

y iy oy ey ay 1.08 0.97 0.97 0.97

Table 5: Values of transformation parameters for
different cepstral coefficients and different classes of
phones.

4. CONCLUSIONS

By applying compensation methods to data passed from a set of
network topologies in the GSM environment, we managed to
reduce the recognizer error rate. We have shown that the POF
method reduces the recognition error rate, but is unstable in terms
of a choice of parameters that would yield the optimal results.
This leads to the conclusion that the GSM noise does not follow
a rich noise pattern and therefore techniques of feature mapping
such as POF do not work very efficiently.

Adaptation techniques acting on both the means and the
variances of the Gaussians of the recognizer’s acoustic models
were more efficient than POF in reducing the mismatch using a

small number of transformations,N g = 10 .

Finally we proposed a  “cocktail” transformation method, where
the recognizer models were trained using a collection of data
from all six topological scenarios. The results tended to be very
close to the ones of the case where the training and testing
environments are the same. This result shows that the proposed
adaptation techniques can be used in real world situations where
the network topology is not known at the receiver.
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