
CASCADE RECURSIVE LEAST SQUARES WITH SUBSECTION ADAPTATION
 FOR AR PARAMETER ESTIMATION

Gaguk Zakaria1, 2 and A. A. (Louis) Beex2

1 Hughes Network Systems, Germantown, MD 20876 USA
2 Systems Group – DSP Research Laboratory

The Bradley Department of Electrical and Computer Engineering, VIRGINIA TECH
Blacksburg, VA 24061 USA

ABSTRACT

We propose the adaptive cascade recursive least
squares (CRLS-SA) algorithm for the estimation of linear
prediction, or AR model, coefficients. The CRLS-SA
algorithm features low computational complexity since
each section is adapted independently from the other
sections. It is shown here that the CRLS-SA algorithm can
yield AR coefficient estimates closer to the true values, for
some known signals, than the widely used autocorrelation
method. CRLS-SA converges faster to the true values of
the model, which is critically important for estimation from
short data records. While the computational effort of
CRLS-SA is a factor of 3 to 4 higher than that for the
autocorrelation method, the improvement in performance
yields a viable alternative for a number of applications.

I. INTRODUCTION

Today’s need for low bit rate speech coding is very
high. There are several different technologies used to
develop low bit rate speech coding. The analysis-by-
synthesis approach is the most popular, and results in the
code excited linear prediction (CELP) coder [8].

One of the most important parameter sets in low bit rate
speech coding is the set of linear prediction (LP)
coefficients, which represents an auto-regressive (AR)
model of the vocal tract. The LP coefficients are then
quantized and transmitted. Note that usually the LP
coefficients are not transmitted directly, rather, they are
converted to another parameter set, such as the line spectral
pair (LSP).

The number of speech samples used in the computation
of LP coefficients is in the range of 40 to 240 samples,
representing a 5 to 30 ms speech segment sampled at 8 kHz
[1, 4, 9]. The most popular technique for computing the LP
coefficients is the autocorrelation method, because it
always yields a minimum-phase model and can be
computed efficiently using the Levinson algorithm. The
question is how good a result the autocorrelation method
yields, especially for the shorter records.

Unfortunately, the true LP coefficients of a speech
signal are not known. Therefore, a reasonable way to
evaluate the performance of LP coefficient estimators is to
use known signals with spectral content resembling that of
speech. We compare the autocorrelation method and the
adaptive cascade recursive least squares algorithm with
subsection adaptation (CRLS-SA), for estimating LP
coefficients.

II. THE CRLS-SA ALGORITHM

The cascade adaptive filter algorithm requires finding
the gradient of the error with respect to the coefficients of
each section [2, 5]. The gradient of the k-th section, ( )n

k
ϕ ,

is defined as:
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where )(ne  is the prediction error filter output from the

final section, and )(nwk  is the tap-weight vector of the k-th

section of the prediction error filter in second-order-section
cascade form. The gradient of the k-th section can be
computed efficiently by filtering the output )(ne  with

)(1 zWk
−  [5, 7], as shown in Figure 1 for an order of four.

Unlike in the direct form RLS algorithm, the
autocorrelation matrix of the cascade RLS (CRLS)
algorithm is defined as the autocorrelation of the gradient
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where N is the order of the filter and each section is a
second-order filter. Hence, the CRLS-SA algorithm still
needs to compute the inverse of NxN autocorrelation
matrices.

For the linear prediction case, the computation of
( )n

k
ϕ  amounts to computing the output after removing all

poles except the k-th poles. For applications where the
poles are well separated, the gradient of each section is



nearly orthogonal to the gradient of the other sections
because they correspond to different poles, or, in the
frequency domain, the poles dominate in different
frequency bands. As a result, the autocorrelation matrix R
will be in the form of a nearly block-diagonal matrix,
where the diagonal blocks Rk are 2x2 matrices representing
the 2x2 autocorrelation matrix of the k-th section. Hence,
we will assume that we can adapt the tap-weight of each
section independently; that is, we need only compute the
inverses of a number of 2x2 Rk matrices.  We therefore
termed the procedure the cascade RLS with subsection
adaptation (CRLS-SA) algorithm. The tap-weights of the k-
th section, ( )nwk , are adapted as follows:
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where ( )np
k

 is the cross-correlation between the input and

the desired signal. Equation (3) can be simplified using the
matrix-inversion lemma [3]. This leads to the CRLS-SA
algorithm which, for each section k, consists of the
following steps:
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where eN/2(n) is the final output of the prediction error
filter, ek(n) is the prediction error output of the k-th section,

)(nuk  is the input to the k-th section, and dk(n) is the

desired signal, which equals )(nuk . The computational

effort required by CRLS-SA is approximately 10*L*N/2,
where L is the length of the data record and N is the order
of the filter.

III. AUTOCORRELATION METHOD

The autocorrelation method of AR estimation, or the
Yule-Walker approach [6], solves the equation:

pwR = (9)

where R is an NxN biased autocorrelation matrix estimate,
p is an Nx1 vector of autocorrelation lags from 1 to N, N is
the order of the filter, and w  is the vector of AR

coefficients. Equation (9) can be solved efficiently using
the Levinson recursion. For an N-th order filter and an L
point data record, the autocorrelation method requires
computational effort of about (N+1)*L to compute the
autocorrelation for lags zero through N, and O(N2) for the
Levinson recursion.

IV. PERFORMANCE COMPARISON

 In speech coding applications, the number of data
points used to estimate the 10-th order LP coefficients is in
the range of 40 to 160 samples. The speech segment is then
considered to be wide-sense stationary over that range. To
compare the performance of the widely used
autocorrelation AR estimator and the CRLS-SA algorithm,
we use two sets of 10-th order AR processes and estimate
their parameters using these two approaches. The 10-th
order AR processes are intended to model the formants of
voiced speech as well as unvoiced speech. The lengths L of
the data records used for simulation are 40, 80, and 160
samples. Only the data records of length 160 are used in
the generation of the figures. The performance for all the
data sets is shown in the tables.

Case I uses an AR process with poles not too close to
the unit circle, as shown in Figure 2. Also shown are the
estimated poles obtained from the autocorrelation method
and the CRLS-SA algorithm. We see that most of the poles
estimated by the CRLS-SA algorithm, denoted by ‘o’, are
closer to the original poles, denoted by ‘x’, than the poles
estimated by the autocorrelation method, denoted by ‘*’.

The spectral densities of the original process and the
two estimates are shown in Figure 3. We note that the
spectral estimate from the CRLS-SA algorithm is closer to
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Figure 1. Cascade Structure Gradient Evaluation



Figure 2. Original and Estimated Poles for Case I.

Figure 3. Spectral Densities for Case I.

the original spectrum than the spectrum estimated by the
autocorrelation method. Furthermore, the distance from the
coefficients estimated by the CRLS-SA algorithm to the
original coefficients is much smaller than that same
distance measure for the autocorrelation method’s
estimates, as shown in Table 1. The distance measure is
defined as the base 10 logarithm of the sum of squared
differences between the true and estimated LP coefficients.

Table 1. LP Coefficient Distance (in dB) for Case I.
# samples

method
40 80 160

CRLS-SA -6.30 -10.71 -11.43
Autocorrelation -4.5 -6.79 -6.89

Case II uses a more narrowband process, for which the
original and estimated poles are shown in Figure 4. The
corresponding original and estimated spectral densities are
shown in Figure 5. The distance measures between the
estimated and original coefficients are shown in Table 2.

Figure 4. Original and Estimated Poles for Case II.

Figure 5. Spectral Densities for Case II.

Table 2. LP Coefficient Distance (in dB) for Case II.
# samples

method
40 80 160

CRLS-SA -5.44 -6.93 -16.05
Autocorrelation -1.46 -4.72 -11.29

Again, we see that the CRLS-SA algorithm outperforms
the autocorrelation method. We offer the following as
likely explanation for these results. The autocorrelation
method’s AR estimate is based on the autocorrelation of
the input signal. In practice, the true autocorrelation is
unknown, so that it is estimated using the temporal
autocorrelation under the assumption that the unobserved
data equals zero. It turns out that for a short data record,
these estimates are relatively poor, especially for
narrowband processes [6].

An RLS-based adaptive algorithm on the other hand,
the CRLS-SA algorithm in this case, makes no assumptions
about the statistical properties of the input data. Instead, it
tries to find a best fit to the input data by minimizing the
sum of the squared errors.



To give an indication (not to be confused with an
absolute measure) of the computational effort required by
the CRLS-SA algorithm in comparison with that for the
autocorrelation method, Table 3 shows the number of
Matlab flops for the two methods, for each of the data
lengths used in the experiments above. The system order N,
was 10 in all cases.

Table 3. Computational Effort (in Matlab flops).
# samples

method
40 80 160

CRLS-SA 6200 12400 24800
Autocorrelation 2119 3559 6439

Note that the computational effort for CRLS-SA is strictly
linear with the data length L, while for the autocorrelation
method that is not quite the case. The important result here
is that CRLS-SA requires 3 to 4 times the computational
effort of the autocorrelation method, for practical record
lengths and orders.

V. CONCLUSION

The CRLS-SA algorithm has been proposed for the
estimation of LP coefficients from short data records, in
particular those data lengths used in speech coding. CRLS-
SA produces better performance than the autocorrelation
method, which is widely used in low bit-rate speech
coding. Considering that the computational effort of the
CRLS-SA algorithm is reasonably low, about 3-4 times
that for the autocorrelation method, CRLS-SA can be
considered a viable alternative for applications using short
record lengths.
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