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ABSTRACT

The least-mean-square (LMS) estimator is a nonlinear es-
timator with information dependencies spanning the entire
set of data fed into it. The traditional analysis techniques
which are used to model this estimator obscure this, restrict-
ing the estimator to the finite set of data sufficient to span
the length of its filter. The finite Wiener filter is thus often
considered a bound on the performance of the LMS esti-
mator. Several papers have reported the performance of the
LMS filter exceeding that of the finite Wiener filter. In this
paper, we will demonstrate a bound on the LMS estimator,
which does not exclude the contributions from data outside
its filter length, and which demonstrates the ability of the
LMS estimator to outperform the finite Wiener filter in cer-
tain cases.

1. INTRODUCTION

The least-mean-square (LMS) adaptive filter was first in-
troduced by Widrow. Since then, it has found widespread
use in many applications [6], due in part to the simplicity
of its implementation; it requires only a finite impulse re-
sponse (FIR) filter and a first-order weight update equation.
This simplicity, however, belies what is actually a complex
nonlinear estimator. A direct analysis of this estimator’s
performance does not appear to be feasible; therefore, at-
tention has focused on restricting the statistics of the input
processes to simplify this analysis. The “independence as-
sumptions” approach, outlined in Section 3 of this paper,
is the most common such method. Through invocation of
this strict set of assumptions, the LMS estimator is mod-
eled as the combination of a finite Wiener filter along with
some ‘misadjustment noise’ representing the difference be-
tween the converged LMS weights and the finite Wiener fil-
ter. This approach has been shown to be an effective way
of analyzing the LMS estimator in many situations, even
when the assumptions are not strictly met [7]. Based on the
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Figure 1: LMS Estimator

widespread success of this model, the finite Wiener filter
is often assumed to bound the performance of LMS esti-
mators. Recently, there have been several papers reporting
cases where the performance of the LMS filter surpasses
that of the finite Wiener filter [4] [5].The work in this paper
continues the investigation of this phenomenon by provid-
ing a bound on the performance of the LMS estimator. In
Section 4 of this paper, we will bound the performance of
the LMS estimator by that of the optimal estimator for a
class of signals without using the “independence assump-
tions.” We will then, in Section 5, compare the performance
of the LMS estimator with that of the optimal estimator
in cases where the LMS estimator outperforms the finite
Wiener filter.

2. BACKGROUND

It is necessary to estimate the current value of a desired
signal, d[n]. To form an estimate,̂d[n], we have avail-
able to us the current and past values of a reference sig-
nal,u[n], which is correlated to the desired signal. We also
have available to us the past error values of our estimate,
e[n � 1] = d[n � 1] � d̂[n � 1]. The LMS estimator uses
these quantities in the filter structure given in Figure 1 to
produce an estimate of the desired signal,d̂lms[n].

The estimate is produced by passing the reference data
through an L-tap FIR filter, where the filter weights are up-
dated through the LMS weight update equation,

~w[n] = ~w[n� 1] + �e�[n� 1]~uL[n� 1] ;

and where
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Figure 2: Independence Assumptions Bound

~w[n] =
�
w0[n] : : : wL�1[n]

�T

and

~uL[n] =
�
u[n] : : : u[n� L+ 1]

�T
:

Assuming that the initial weight vector at timen = �1
is the all-zero vector, we can write the LMS estimator as a
nonlinear function of the semi-infinite set of reference data,
as well as of past values of the desired signal:

d̂lms[n] = �

n�1X

i=�1

e[i]~uHL [i]~uL[n] (1)

= f(u[n]; � � � ; u[�1]; d[n� 1]; � � � ; d[�1]) :

A direct analysis of this estimator’s performance does
not appear to be feasible. The traditional approach to re-
duce the complexity of the analysis has been to restrict the
statistics of input signals through a set of four assumptions,
collectively known as the “independence assumptions.”

3. INDEPENDENCE ASSUMPTIONS

The performance of any estimator can be bounded by that of
the optimal estimator. The optimal MSE estimator is given
by the mean of the desired signal, conditioned on the knowl-
edge of all information available to the estimator [1]. Exam-
ining the equation for the LMS estimator (1), the optimal
estimator is

d̂opt[n] = E fd[n]ju[n]; � � � ; u[�1]; d[n�1]; � � � ; d[�1]g :
(2)

Actually solving for this estimator requires knowing the
statistics of the signalsu[n] and d[n]. Under the “inde-
pendence assumptions,” the statistics of the signals are re-
stricted through the following four assumptions [3]:

1) tap input vectors~uL[n]; � � � ; ~uL[�1] are independent
of each other;

2) ~uL[n] is independent ofd[n� 1]; � � � ; d[�1];

3) d[n] is dependent on~uL[n], but independent of
d[n� 1]; � � � ; d[�1];
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Figure 3: Optimal Estimator

4) ~uL[n] andd[n] are mutually Gaussian.

These assumptions simplify the conditional mean, allowing
for the optimal estimator to be obtained. Using assumptions
1,2,and 3 reduces the conditional mean to

d̂ind[n] = E fd[n]ju[n]; � � � ; u[n� L+ 1]g :

Condition 4 requires the optimal estimator to be linear, and
is then given by

d̂ind[n] =

L�1X

i=0

w�ind[i]u[n� i] :

This is recognized as the finite Wiener filter operating on
the L reference valuesu[n]; � � � ; u[n� L+ 1]. Thus, the
MSE performance of the LMS estimator, under these as-
sumptions, can be bounded by the MSE of the finite Wiener
filter (Figure 2), where the filter weights are given in terms
of the autocorrelation matrix of the reference signal and the
cross correlation between the reference vector and desired
signal.

4. OPTIMAL ESTIMATOR

The “independence assumptions” are very restrictive, ex-
empting most signals found in communications systems.
All the cases where the LMS filter outperformed the finite
Wiener filter used signals which necessarily violate the “in-
dependence assumptions.” Since our primary concern is
bounding, not modeling, the performance of the LMS fil-
ter, we will now derive a bound without using the “indepen-
dence assumptions.”

The optimal estimator is given in (2). Using only an ex-
pansion of independence assumption 4, the mutually Gaus-
sian assumption, to include the entirety of both processes,
the optimal estimator is a linear estimate and is given by

d̂opt[n] =

nX

i=�1

aiu[i] +

n�1X

i=�1

bid[i] : (3)

Note that (3) is a function of all the past reference data, and
of all past samples of the desired signal. This equation can
be rewritten as the output to the system shown in Figure 3,



d̂opt[n] =
nX

i=�1

hu[n�i]u[i]+
n�1X

i=�1

hd[n�1�i]d[i] ; (4)

where the impulse responses of the causal linear filter and
causal linear predictor are given ashu[n] andhd[n], respec-
tively. The form of the optimal estimator is known; solving
for it requires finding the causal filters,hd[n] andhu[n],
which result in the minimum MSE. This involves solving
the multidimensional Wiener filtering/prediction problem for
the given reference and desired signals. The MSE of the op-
timal estimator bounds the LMS estimator’s performance.

5. RESULTS

To demonstrate this bound for scenarios where the LMS es-
timator outperforms the finite Wiener filter, we first present
a system for which the optimal estimator can be solved, then
we produce reference and desired signals which when oper-
ated on by an LMS estimator result in the estimator’s per-
formance exceeding that of the finite Wiener filter.

The system given in Figure 4 consists of stable auto-
regressive (AR) processes. The desired and reference sig-
nals are first order AR processes generated from the same
white Gaussian noise source with an independent Gaussian
noise component added to each signal. The optimal estima-
tor (4) for this system can be obtained; the solution involves
solving the multidimensional Wiener filtering/prediction
problem as presented by Wong [8]. The matrix spectral fac-
torization which this solution requires was performed using
a method presented by Davis in [2].

For the LMS adaptive filter to outperform the finite Wie-
ner filter, it is necessary to generate scenarios where the op-
timal estimator, and thus the LMS filter, have significant
contributions from data not available to the finite Wiener
filter. This can be achieved by restricting the poles of the
AR processes to be close to the unit circle.

The MSE performance of the LMS estimator was eval-
uated through Monte Carlo simulations. Instead of the stan-
dard LMS weight update algorithm, the normalized least
mean square (NLMS) algorithm was used [3]. The finite
Wiener filter and optimal estimator performances were eval-
uated numerically. Plots of the MSE performance of the
LMS estimator, optimal estimator, and finite Wiener filter
are shown under different combinations of the pole loca-
tions.

Figure 5 is a graph of the MSE as a function of the adap-
tation constant�. For this simulation, the AR pole locations
were held constant with radiir = 0:99 and an angle sepa-
ration,�� �, of 3:6 degrees. From the plot, notice that the
LMS estimator does indeed outperform the finite Wiener fil-
ter. Also, note that the LMS estimator performance comes
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Figure 4: Simulation System

close to achieving that of the optimal estimator as� in-
creases to an optimal value. Having a decreasing MSE as
� increases is contrary to the conventional wisdom that has
resulted from the “independence assumptions” model. This
can be explained by noting that� regulates the amount of
error fed back into the LMS estimator; by increasing the
amount of error being fed back, one is increasing the con-
tributions of the data from the past values of desired and
reference data, which are unavailable to the finite Wiener
filter.

Figure 6 is a graph of MSE as a function of the pole radii
r, where for each value ofr the LMS estimator MSE val-
ues were taken over a range of adaptation constants; the one
which resulted in the smallest MSE was used. The pole an-
gle separation,���, was held constant at3:6 degrees. The
powers of the AR processes were held constant for the var-
ious radii by varying the generator noise process’s power.
The performance of the optimal estimator is almost invari-
ant to the pole locations, and is instead dependent on the
signal-to-noise ratios in the reference and desired channels.
Also, note that it is not until the poles begin to approach the
unit circle that the optimal estimator and the finite Wiener
filter’s performance begin to diverge. The LMS estimator’s
performance was dependent on the pole locations, but not
to the same degree as the finite Wiener filter; its MSE rose
more slowly than that of the finite Wiener filter as the poles
approached the unit circle.

Figure 7 is a graph of MSE as a function of the pole an-
gle difference, and again the LMS estimator’s performance
was evaluated over a range of adaptations constants, the one
with the lowest MSE being used. The pole radii were held
constant atr = 0:99. The smaller the angle separation,
the greater cross-correlation between the reference and the
desired process. This, along with the long autocorrelation
sequences resulting from the poles’ proximity to the unit
circle, allows the LMS estimator to take advantage of cor-
related data outside of the range of the finite Wiener filter,
resulting in lower MSE for the LMS estimator.



6. CONCLUSION

In conclusion, we bounded the performance of the LMS
estimator without using the “independence assumptions.”
Cases where the LMS estimator outperforms the finite Wie-
ner filter were then generated, and the performance of the
LMS estimator was compared to the bound. The LMS es-
timator was found to greatly outperform the finite Wiener
filter in these cases, and, in some cases, resembled that of
the optimal estimator. This behavior can be attributed to
the fact that the LMS estimator uses information not avail-
able to the finite Wiener filter. This data includes not only
all values of the reference data, but also all past values of
the desired signal. Finally, while the effect demonstrated
in this paper occurs only under severe violation of the “in-
dependence assumptions,” it does have applications in both
interference suppression and noise cancellation. Both North
[4] and Reuter [5] have demonstrated the usefulness of this
property when the LMS estimator is used in adaptive equal-
izers to suppress a narrow-band interferer. As for noise can-
cellation, the simulations presented in this paper could be
easily reworked to represent the LMS estimator when it is
used to cancel a Doppler shifted narrow-band signal.
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Figure 5: Variation of the NLMS adaptation constant
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Figure 6: Variation of the pole radii
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Figure 7: Variation of the pole angle difference


