
COMPRESSION OF ACOUSTIC FEATURES FOR SPEECH RECOGNITION
IN NETWORK ENVIRONMENTS

Ganesh N. Ramaswamy Ponani S. Gopalakrishnan

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

ABSTRACT
In this paper, we describe a new compression algorithm for encod-
ing acoustic features used in typical speech recognition systems.
The proposed algorithm uses a combination of simple techniques,
such as linear prediction and multi-stage vector quantization, and
the current version of the algorithm encodes the acoustic features at
a fixed rate of 4.0 Kbit/s. The compression algorithm can be used
very effectively for speech recognition in network environments,
such as those employing a client-server model, or to reduce stor-
age in general speech recognition applications. The algorithm has
also been tuned for practical implementations, so that the computa-
tional complexity and memory requirements are modest. We have
successfully tested the compression algorithm against many test
sets from several different languages, and the algorithm performed
very well, with no significant change in the recognition accuracy
due to compression.

1. INTRODUCTION

The first step in a speech recognition system involves the com-
putation of a set of acoustic features from sampled speech. One
common set of acoustic features is the set of mel-cepstral features,
which can be computed as described in [1] or elsewhere. These
acoustic features are then submitted to a speech recognition en-
gine where the utterances are recognized. For speech recognition
systems in network environments,such as those employing a client-
server model, typically the acoustic features are computed on the
client system and transmitted to the server system for recognition.
In this scenario, it is highly desirable to compress the acoustic fea-
tures to minimize the bandwidth requirements for the transmission.
Compression is also useful in more general speech recognition sys-
tems where storage of the acoustic features is needed.

Although the topic of speech compression has been well re-
searched over the years (see [3] for a summary), all of the proposed
solutions only address the problem of compressing and reproduc-
ing speech that sounds acceptable to a human ear, and not the
problem of compressing the acoustic features computed from spo-
ken utterances, for the purpose of subsequent machine recognition
of speech. Hence, a new compression algorithm is needed.

There are several constraints that need to be addressed in de-
veloping such an algorithm. In addition to reducing the bandwidth
required to transmit the data, such that client-server speech recog-
nition is viable using very low-bandwidth wide-area wireless links,
it is crucial that the compression does not introduce noise that de-
grades the recognition accuracy. At the same time, since some of
the client devices used may have limited computational resources,
it is also highly desirable that the compression algorithm has low
computational complexity and low memory requirements.

In this paper, we propose a new compression algorithm to en-
code the acoustics features at a fixed rate of 4.0 Kbit/s that satisfies
the above requirements and constraints. This is the first in the
family of compression algorithms that we plan to introduce in the
future that addresses the problem of compressing acoustic features.
In the version presented in this paper, we use a combination of sim-
ple techniques, ranging from linear prediction to multi-stage vector
quantization, along with strategies to minimize the computational
resources required. We also describe some of the experiments that
were done to evaluate the performance and the robustness of the
new algorithm, using a number of test sets drawn from several
different languages.

The remainder of the paper is divided into four sections. In
Section 2, the compression algorithm is described in detail. In
Section 3, several practical implementation issues are addressed.
Section 4 contains the results of some of the experiments that were
conducted to evaluate the algorithm. Section 5 concludes the paper.

2. THE NEW COMPRESSION ALGORITHM

Figure 1 shows a speechrecognition system involving compression
and decompression of acoustic feature vectors. We will assume
that the feature vectors are 13-dimensional vectors consisting of
mel-cepstral features, as noted in Section 1. We also assume that
the feature vectors are computed every 10 ms, which is the typical
frame rate in most speech recognition systems. The proposed com-
pression algorithm can easily be modified for systems employing
different a feature set or a different frame rate.

Figure 2 describes the various steps in the compression process.
The first step is the Linear Prediction step, which is designed to
take advantage of the correlation (in time) between subsequent fea-
ture vectors. One simple method would be to take the difference
between adjacent features vectors, which is a 1-step (scalar) linear
prediction, and we found this to work very well in our test cases.
Although we could use a multi-step multi-dimensional linear pre-
diction, we found that the additional computational complexity is
not worth the marginal improvements in performance. Hence, the
version of the compression algorithm presented in this paper uses
only a simple 1-step prediction, where the feature vector in the
current frame is compared against the encoded feature vector from
the previous frame, for all vectors except for the very first one.
Since there will be no prior encoded vector to compare the very
first vector, it will be compared against a precomputedmean vector.
Therefore, in the terminology of Figure 2, the data for prediction
is the precomputed mean vector for the first feature vector, and
the encoded vector from the previous frame for all other feature
vectors.

The error vector from linear prediction is then subjected to



Sampled Speech Data

Feature Extraction

Compression

Decompression

Transmission
or
Storage

Recognition Engine

Figure 1: A Speech Recognition System Involving Compression
and Decompression of the Acoustic Features.

Linear Prediction

Primary Vector Quantizer

Scalar Quantizer

Feature Vector

Encoded Vector Signal for Transmission or Storage

Data for Prediction

Primary Vector Codebook

Secondary 
Vector Quantizers

Secondary
Vector Codebooks

Scalar Codebook

Figure 2: The Compression Process.

multi-stage vector quantization. In the current version of the com-
pression algorithm, there are two vector quantizers. The Primary
Vector Quantizer, takes the error vector from linear prediction and
compares it to the entries in the Primary Vector Codebook, using
a distance measure such as the Euclidean distance, and selects the
entry in the codebook that best approximates the vector. In the
experiments to be described in Section 4, we use a Primary Vec-
tor Codebook consisting of 4096 vectors of 13-dimensions each.
The construction of the codebook and techniques for searching the
codebook quickly will be described in Section 3.

The 13-dimensional residual vector remaining after the Pri-
mary Vector Quantization is then sent to the Secondary Vector
Quantizer(s), and also to the Scalar Quantizer. See Figure 2. As-
suming that the original 13-dimensional feature vector contains the
C0 (or the energy) coefficient of the mel-cepstral feature set as its
13th dimension, the residual vector from the Primary Vector Quan-
tizer is partitioned into three subvectors of dimensions 6, 6, and 1,
where the last subvector (which is a scalar) corresponds to the C0
or energy element. In the present implementation, only the first two
6-dimensional subvectors are used in the Secondary Vector Quan-
tization, and the third 1-dimensional subvector is sent directly to
the Scalar Quantizer (in Figure 2, we show the inputs to the Scalar
Quantizer as coming from the Secondary Vector Quantizer and this
may be slightly misleading, but the figure is intended to describe
a more general scenario). In the Secondary Vector Quantization
stage, each of the two 6-dimensional subvectors are assigned to the
closest entries in the Secondary Vector Codebooks (each subvector
has a separate codebook). As in the Primary Vector Quantiza-
tion stage, we can again use the simple Euclidean distance as the
metric for comparison. In the current version of the algorithm,
we use two Secondary Vector Codebooks containing 4096 vec-
tors of 6-dimensions each. Details concerning the construction of
codebooks and searching strategies will be described in Section 3.

The third 1-dimensional subvector of the residual from the
Primary Vector Quantizer is the only one to be subjected to Scalar
Quantization, where we assign the subvector to the closest entry
in the Scalar Codebook. In the current version, we use a Scalar
Codebook containing 16 entries.

We treat the 13th dimension (the C0 or the energy coefficient)
separately because this entry is usually much more sensitive to en-
vironmental and other variations, and treating the entry separately
provides additional robustness. Although in the present version
we start treating the 13th dimension separately only after the Pri-
mary Vector Quantization stage, it may be worthwhile to consider
treating the the entry separately even before any quantization (for
which we may have to take a slight bandwidth and/or performance
hit).

After the Scalar Quantization stage, the compression process is
essentially complete. All that needs to be done now is to assemble
the indices corresponding to the chosen entries in the various code-
books, to form the final Encoded Vector. In the current version,
we use 40 bits to form the Encoded Vector, with the first 12 bits
allocated for the index into the Primary Vector Codebook, the sec-
ond 12 bits allocated for the index into the first Secondary Vector
Codebook, the third 12 bits allocated for the index into the second
Secondary Vector Codebook and the last 4 bits allocated for the in-
dex into the Scalar Codebook. With a frame duration of 10ms, 100
Encoded Vectors are computed per second, for a fixed data rate of
4.0 Kbit/s. Without any compression, where 13-dimensional fea-
ture vectors in floating point representation have to be represented
every 10 ms, the required data rate is 41.6 Kbit/s, and hence the



Table 1: Experiments with WSJ Test Data. The table below shows the errors rates for the various experiments performed on the WSJ
test data. The “Uncompressed” column shows the results of the baseline test, where the data was not compressed. The last three columns
show the results for three different compression experiments.

Speaker Words Uncompressed Compressed I Compressed II Compressed III
a 696 6.2% 5.7% 5.6% 5.7%
b 731 12.2% 12.3% 12.3% 10.8%
c 660 19.8% 19.1% 19.5% 17.7%
d 704 9.8% 10.2% 9.8% 9.5%
e 714 8.4% 7.1% 7.8% 8.1%
f 673 10.3% 9.8% 10.8% 11.0%
g 665 11.0% 10.5% 10.8% 11.3%
h 691 16.1% 16.8% 16.1% 14.8%
i 610 8.9% 9.7% 9.3% 10.7%

Total 6144 11.4% 11.2% 11.3% 11.0%

compression algorithm provides for a reduction of bandwidth by a
factor of more than 10.

The decompression stage is a straightforward process. The
indices corresponding to the different codebooks are first extracted
from the Encoded Vector,and the corresponding entries in the code-
books are obtained via simple table look-up steps, and added to the
Data for Prediction (which is either the precomputed mean vector
or the encoded vector from the previous frame) to reverse the Lin-
ear Prediction stage of the compression process. The reconstructed
vector is then used for recognition.

We have chosen to focus on a fixed rate compression algorithm
for the sake of simplicity. However, a variable rate scheme may
provide additional enhancements, which may be desirable for some
applications, and we intend to pursue such schemes in the future.

3. PRACTICAL CONSIDERATIONS

Since the Linear Prediction uses only a simple 1-step prediction,
this stage is not computationally intensive. But the vector quan-
tization stages can be quite intensive and fast searching strategies
and other simplifications are necessary to reduce the computational
resources required.

A common technique used to speed-up the searching of the
codebooks is to use a tree-structured search [2], so that we search
only a portion of the codebook instead of the whole codebook.
For example, since our Primary Vector Codebook contains 4096
entries, we can group these entries into 64 groups of 64 entries each,
and construct an intermediate codebook containing 64 entries. The
entries in this intermediate codebook may be set to the centroid
of the 64 vectors in each of the groups. With this approach, we
can first search the intermediate codebook and find the best match,
and then search only the corresponding group of 64 entries in the
actual codebook for the final match. We call this the “64-64” tree
structure for the 4096-entry codebook. Therefore, we only do 128
distance comparisons, as opposed to 4096 distance comparisons
without the search strategy. Using such a search strategy may
sometimes not provide the optimal results, but the computational
savings are well worth the tradeoff.

In the experiments of Section 4,we use the 64-64 tree-structured
search strategy for searching the Primary Vector Codebook, and the
two Secondary Vector Codebooks which also contain 4096 vectors

each. Note that we have artificially forced each group to contain
the same number of entries, which was done for the sake of main-
taining simplicity. Additional performance improvements may be
obtained by allowing different groups to have different number of
entries, and in this case the computational load may vary according
the to nature of the data.

One other issue that needs to be addressed in implementing the
compression algorithm is the memory required to store the code-
books. The entries in the each of the codebooks would normally be
floating point numbers, with each number requiring 4 bytes of stor-
age. However, if we constrain all the entries to be integers, we can
store them as short integers, requiring only 2 bytes of storage per
integer. With this approach,we can cut the memory requirement by
a factor of 2, and we will see in Section 4 that there is no significant
performance loss in doing so. In this case, the memory required
to store all the codebooks is approximately 200 KB, which is very
reasonable for most systems. If additional reduction in memory is
needed, we could partition the vectors into more subvectors and
use more codebooks with fewer entries (but there may be some
performance loss).

With the key issues pertaining to the implementation of the al-
gorithm sorted out, constructing the codebooksbecomes a straight-
forward process. We start with a collection of training data and
calculate the feature vectors. The precomputed mean vector for
use in the Linear Prediction stage for the first vector can be set
to the mean of all the first vectors in each sentence of the train-
ing set. After that, the linear prediction step is applied to all the
vectors in the training set, and we apply the popular K-means clus-
tering algorithm [2] to the resulting vectors and generate all the
codebooks.

4. EXPERIMENTAL EVALUATION

In this section we describe some of the experiments that were
conducted to evaluate the proposed compression algorithm. All
the codebooks described in the section were developed using a
portion of corpus from the ARPA sponsored Wall Street Journal
(WSJ) task.

Table 1 shows the results of the first set of experiments, where
the test data consisted of a portion of the 1992 development test
set from the WSJ corpus (see [1] for some additional information



about the test set). There were a total of 6144 words from 9 differ-
ent speakers. We used a speaker independent continuous speech
recognition system, with all the parameters of the recognition en-
gine fixed for all the experiments (although the system used here is
similar to the system described in [1], we used a version that was
tuned for speed and not for performance, and therefore the recog-
nition accuracy reported here for the baseline system is not the
best). The detailed description of the recognition engine is omitted
here since it is not relevant to the specific focus of evaluating the
compression algorithm.

The column labeled “Uncompressed” shows the error rates for
the baseline system, where we used the original uncompressedfea-
ture vectors for the recognition. The average error across all the
speakers was 11.4% with the given version of the speech recogni-
tion engine.

The column labeled “Compressed I” shows the error rates for
the first experiment. In this experiment, the codebooks contained
floating point entries and we used the 64-64 tree structure for
searching the Primary and Secondary Vector codebooks. We took
the test data and subjected it to the compression and decompres-
sion, and the resulting feature vectors were used in the recognition
process, with all other parameters and components of the recogni-
tion engine remaining fixed. The error changed only slightly for
most of the speakers, with the average error dropping marginally
to 11.2% after introducing the compression process. Despite the
simplicity of the proposed algorithm and the relatively tight com-
pression being applied, the performance was strikingly remarkable.

The column labeled “Compressed II” shows the error rates for
the second experiment, where all entries in all of the codebooks
were constrained to be (short) integers, to save on memory as we
discussed in Section 3. The additional round-off errors appear to
not make any significant difference, since the average error rate for
this experiment was 11.3%, which is still lower than the baseline
uncompressed case.

The column labeled “CompressedIII” shows the error rates for
the third experiment. In this experiment, we used the integer-only
codebooks from the second experiment to compress and decom-
press all of the acoustic training data and generatednew prototypes.
With this step, the engine was be trained with data that closely
matches the characteristics of the test data, and not surprisingly,
the average error rate now drops further to 11.0%.

In the three experiments described in Table 1, both the test
data and the data for generating the codebookswere drawn from the
WSJ corpus. Even though we used different portions of the data for
testing and for generating the codebooks, the basic characteristics
of the data remain the same. Also, the WSJ data is “clean” and
gives relatively low error rates. In order to test the robustness of the
compression algorithm, we need to test it against data that would
otherwise give high error rates. At the same time, we also need to
determine if the compression algorithm is language independent.

Therefore, we subjected the compression algorithm to a very
difficult test. We used the same codebooks from the WSJ data
(which is all American English), and tested the compression algo-
rithm against test sets (continuous dictation, read speech) from 5
different European languages. In particular, we intentionally chose
test sets that had high error rates, for reasons noted above. Again,
the recognition system used was a preliminary version which was
not optimized for accuracy. It should be noted that in addition to
the differences in the languages themselves, there are also differ-
ences in the data sets due to other reasons, such as the different
microphones used to collect the data.

Table 2: Experiments with High Error Rate Test Data. The table
below shows the error rates for experiments where the test data
was drawn from several different languages, and was intentionally
chosen such that the baseline test had high error rates, to illustrate
the robustness of the algorithm.

Language Words Uncompressed Compressed
French 6840 23.5% 23.6%
German 6764 13.2% 13.7%
Spanish 4730 7.2% 7.1%
Italian 6925 15.6% 15.6%

UK English 6290 24.2% 24.5%
Total 31549 17.3% 17.4%

Once again, the compression algorithm provided very good
results, which are shown in Table 2. The high error rate of the
baseline (uncompressed) case did not affect the performance of
the compression algorithm significantly. Although the average
error rate increases slightly due to compression, regenerating the
codebooks with data from all the different languages should easily
solve that problem. If additional improvements are desired, then
we can regenerate the acoustic prototypes with data subjected to
compression, as described previously.

5. CONCLUSIONS

In this paper, we described a new compression algorithm for en-
coding the acoustic features at a fixed rate of 4.0 Kbit/s. This is
the first in the family of algorithms that we are developing to ad-
dress the problem of compressingand encodingacoustic features in
speech recognition. Despite its simplicity, modest computational
complexity and the tight compression it provides, the algorithm
performed very well in all the test sets, including those from dif-
ferent languages, and even when there were mismatches in the
characteristics of the data used for generating the codebooks and
the data used for testing.

The promising results presented in the paper open several new
exciting avenues for further work, some of which were identified
in this paper. We plan to develop a new framework for encoding
acoustic features in general, incorporating new strategies and en-
hancements to the compression algorithm, and the results will be
reported in the future.

REFERENCES

[1] Bahl, L. R., et. al., “Performance of the IBM Large Vocab-
ulary Continuous Speech Recognition System on the ARPA
Wall Street Journal Task,” Proceedings of the IEEE ICASSP,
Detroit, pp. 41-44, May 1995.

[2] Gersho, A., and Gray, R. M., Vector Quantization and Signal
Compression, Kluwer Academic Publishers, 1992.

[3] Klein, W. B., and Paliwal, K. K. (ed.), Speech Coding and
Synthesis, Elsevier, 1995.


