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ABSTRACT

In this paper, a perturbation expansion technique is introduced to
decompose the tracking error of a general adaptive tracking algo-
rithm in a linear regression model. This method allow to obtain
tracking error bound but also tight approximate expressions for the
moments of the tracking error. These expressions allow to evalu-
ate, both qualitatively and quantitatively, the impact of several fac-
tors on the tracking error performance which have been overlooked
in previous contributions.

1. INTRODUCTION

An important issue in system identification, signal processing, au-
tomatic control is that of tracking the parameter variations in a lin-
ear regression model

yt = �Tt �t + vt ; t � 0 (1)

where fytgt�0 and fvtgt�0 are respectively the scalar observation
and noise, f�tgt�0 and f�tgt�0 are the d-dimensional stochastic
regressor and the unknown time-varying parameter. This model
encompassesmany different applications, including channelequal-
ization, time delay estimation and echo cancelation [5]. In the se-
quel it is assumed that the parameter variation obeys

�t+1 = �t +wt+1 (2)

where wt+1 is referred to the lag-noise. To track the variations of
the parameter, it is customary to use a recursive algorithm for up-
dating an estimate �̂t of the parameter (see [6, 5] and the references
therein). Most of these algorithms can be put in the form

�̂t+1 = �̂t + �Lt(yt � �Tt �̂t): (3)

where� is referred to as the adaptation step-size andLt is a random
vector, which can be chosen in a number of different ways. There
is a vast literature on the analysis of algorithms of type (3). In most
contributions, the main goal is to obtain bounds on the tracking er-
rors. Results in that directions have been obtained in [6, 4, 3]. In
this contribution a different approach is pursued. Our goal is to ob-
tain explicit expression and not only bounds for the tracking error.
To that purpose, we will use a technique, referred to as ‘perturba-
tion expansion’, consisting in getting approximations (3) by nested
processes, with much simpler structure than the original error pro-
cess. This particular decomposition enables the computation of ex-
plicit expressions for the moments and other related quantities.

2. PERTURBATION EXPANSION: OUTLINES OF THE
METHOD

From (1) and (3), we can write

~�t+1 = (I � �Lt�
T
t )~�t + �Ltvt � wt+1; (4)

where ~�t = �̂t � �t is the weight-error vector. Since this equation
is linear, ~�t+1 can be decomposed as

~�t =
u ~�t + �v ~�t +

w ~�t;
u~�t+1 = (I � �Lt�

T
t )

u~�t
u ~�0 = ~�0 = ��0;

v~�t+1 = (I � �Lt�
T
t )

v~�t + Ltvt;
v ~�0 = 0

w ~�t+1 = (I � �Lt�
T
t )

w ~�t �wt+1;
w ~�0 = 0

fu~�tg is a transient term, reflecting the way the successive esti-
mates of the regression coefficients forget the initial conditions. fv ~�tg
accounts for the errors introduced by the measurementnoise, fvtg;
similarly, fw ~�t+1g accounts for the errors associated lag-noisefwtg.
According to these definitions, v ~�t andw ~�t obey an inhomogeneous
stochastic recurrence equation

�t+1 = (I � �Ft)�t + �t; �0 = 0 (5)

=

tX
s=0

�(t; s)�s (6)

where fFtgt�0 matrix valued random process, f�tgt�0 is a (d�1)
vector-valued random process, and �(t; s) is defined as

�(t; s) =

(
(I � �Ft)(I � �Ft�1) � � � (I � �Fs+1) t > s
I t = s
0 otherwise

Here, the dependenceof �t upon the step-size� is implicit. Eqs (2)
and (2) may be rewritten as (5) with Ft = Lt�

T
t and

�t = Ltvt measurement noise; �t = �wt+1 lag noise (7)

Applied to the recurrence equation (5), the whole procedure goes
as follows. Denote �Ft = E(Ft) and Zt = �Ft � Ft. We may
decompose (I � �Ft) according to

I � �Ft = (I � � �Ft) + �Zt: (8)

Now, decompose the recurrence equations (5) into two separate re-
cursions:

J
(0)
t+1 = (I � � �Ft)J

(0)
t + �t; J

(0)
0 = 0 (9)

H
(0)
t+1 = (I � �Ft)H

(0)
t + �ZtJ

(0)
t ; H

(0)
0 = 0 (10)

�t = J
(0)
t +H

(0)
t : (11)



According to (9), J (0)t satisfy a deterministic inhomogeneous first-
order linear difference equation:

J
(0)
t+1 =

tX
s=0

 (t; s)�s (12)

where, as above,

 (t; s) =

(
(I � � �Ft)(I � � �Ft�1) � � � (I � � �Fs+1) t > s
I t = s
0 otherwise

Under appropriate assumptionson the matrix valued sequencesfFtgt�0
and on the excitation f�tg, it will be shown that, for some p > 0
there exists a constant C < 1 and �0 > 0 such that for all 0 <
� � �0

sup
t�0

kJ (0)t kp � C=
p
� and sup

t�0

kH(0)
t kp � C (13)

where C <1 is a constant depending on fFtg and f�tg (see be-
low). Thus, J (0)t may be considered as the leading term in the ex-
pansion, while H(0)

t may be seen as a correction term. The same
procedure can be iterated to obtain approximations of increased ac-
curacy. For that purpose, it suffices to decompose (10) using (8),
and iterate that decomposition up to order n > 1. Using this tech-
nique, �t may be written as

�t = J
(0)
t + J

(1)
t + � � �+ J

(n)
t +H

(n)
t ; (14)

where the processes J (r)t , 0 � r � n and H(n)
t are respectively

defined as

J
(0)
t+1 = (I � � �Ft)J

(0)
t + �t ; J

(0)
0 = 0

J
(r)
t+1 = (I � � �Ft)J

(r)
t + �ZtJ

(r�1)
t ; J (r)t = 0; 0 � t < r

H
(n)
t+1 = (I � �Ft)H

(n)
t + �ZtJ

(n)
t ; H(n)

t = 0; 0 � t < n

The processes J (r)t depend linearly on �t and polynomially in the
error Zt = �Ft � Ft. It is thus feasible (examples are given be-
low) to compute the joint moments of these processes, and to ob-
tain expressions for the moments of ~�(n)t = J

(0)
t + � � � + J

(n)
t .

The residual termH
(n)
t is, under appropriate conditions, uniformly

bounded, i.e., there exists some constantC <1 and �0 > 0, such
that, for all 0 < � � �0, we have

sup
t�0

kH(n)
t kp � C�n=2: (15)

Upper bounds for the constantC are given below.

3. MAIN RESULTS

3.1. Notations and Definitions

To develop a useful theory, one typically needs to impose assump-
tions on fFtg and f�tg. It is not difficult to guess that typical as-
sumptions are of the kind (i) restriction on the tail of the distribu-
tion, e.g. existence of moments and / or exponential moments and
(ii) restriction on the dependence among the fFtg and the f�tg.
The latter conditions are referred to as mixing conditions. To make
more precise statements, some notations and definitions are in or-
der.

Definition Let q � 1 and let X = fXngn�0 be a (l � 1) vector-
valued process. Let � = (�(r))r2N a sequence decreasing to zero
at infinity. X = fXngn�0 is called (�; q)-weak dependent, if there
exists finite constants C = fC1; � � � ; Cqg, such that for any 1 �
m < s � q, anym-tuple t1; � � � ; tm and any s�m-uple tm+1; � � � ; ts,
with t1 � � � � � tm < tm + r � tm+1 � � � � ts, it holds

sup
i1;��� ;is

��cov(Xt1;i1 � � �Xtm;im ;Xtm+1 ;im+1 � � �Xts;is )
�� � Cs�(r)

where Xn;i denotes the i-th component of Xn. As shown in [8],
weak-mixing processes encompass a large class of models and in
particular strongly mixing processes. The following result plays a
key role in the sequel

Proposition 1 Let p � 1 and n 2 N. Let G = fGtgt�0 be a
(d � d) zero-mean matrix-valued process. Assume that (�; p(n +
2)) weak-dependent and thatX

(r + 1)p(n+2)=2�1�(r) <1: (16)

Then, there exists a finite constantDp;n(G), such that for all j 2
f1; � � � ; ng and all 0 � s � t <1, we have







X
s�i1<���<ij�t

Gi1 � � �Gij








pn=j

� Dp;n(G)(t� s)j=2:
(17)

Let B be a subfield of the basic probability space (
;A).

� Let q � p > 0 be two real numbers. For any � = f�kgk�0
d� 1 vector-valued sequence, defineN (p; q;B) as the set

n
� :







tX

k=s

Gk�k







p

� �p;q(�)

 
tX

k=s

kGkk2q
!1=2

8 0 � s � t 8 G = fGkgk�0 (1�d) 2 Lq(
;B; P )
o

Conditions upon which a processf�kg belongs to the setN (p; q;B)
and expressions of the constants �p;q(�) are given in the extended
version of this paper.

3.2. The Main Results

We may now formulate the central results of our contribution. The
first result gives condition upon which J (r)s is uniformly bounded
in Lp and provides an expression for that bound.

Theorem 1 Assume that, for some integern and real numbersq �
p � 2:

� (i) F = fFtgt�0 is averaged exponentially stable,

� (ii) F is (�; q(n + 2)) weakly dependent, andX
(r + 1)(q(n+2)=2�1�(r) <1:

� (iii) � = f�tg 2 N (p; q;F )

Then, there exists a constantK <1 (depending on F and on the
numerical constantsp; q; n; �0; � but not on f�tg or on the stepsize
parameter �), such that for all 0 < � � �0, for all 0 � r � n

sup
s�1

kJ (r)s kp � K �p;q(�)�
(r�1)=2: (18)

where �p;q(�) is the constant defined in ().



HereN (p; q;F ) is a shorthand notation forN (p; q;M1
0 (F )). To

complete our program, we need to bound the remainder termH
(n)
s .

As shown below, under appropriate conditions,H(n)
s is uniformly

bounded in Lq as soon as J (n+1)s is Lr stable (for sufficiently large
r) and the bound for sups kH(n)

s kq is proportional to sups kJ (n+1)s kr .

Theorem 2 Let p � 2 and let a; b; c > 0 such that 1=a + 1=b +
1=c = 1=p. Let n 2 N. Assume that

� fFtg is La-exponentially stable,

� sups�0 kZskb <1 and,

� sups�0 kJ (n+1)s kc <1.

Then, there exists a constantK 0 <1 (depending on the numerical
constants a; b; c; �; �0; n and on the process fFtg but not on the
processf�tg or on the stepsize parameter�), such that for all 0 <
� � �0 ,

sup
s�0

kH(n)
s kp � K 0 sup

s�0
kJ (n+1)s kc: (19)

4. PERFORMANCE OF ADAPTIVE TRACKING
ALGORITHMS

A number of useful error bounds or expressions can be drawn from
the results derived in the previous section. We use the notations
introduced in section 1. Let n be a positive integer and p be a real
number p � 2. Finally, let a; b; c; d be positive numbers such that
a�1 + b�1 + c�1 = p�1 and d � c. Denote: Ft = Lt�

T
t .

� (H1) F = fFtg is La and averaged exponentially stable,

� (H2) F is (�; d(n+ 2)) weak dependent; in addition,

sup
t�0

kFt �E(Ft)kb <1;

1X
r=0

(r + 1)d(n+2)=2�1�(r) <1:

� (H3) fLtvtg 2 N (c;d;F ) and fwtg 2 N (c;d;F ).

The tracking error may be expanded as ~�t =u ~�t + �v ~�t +
w ~�t,

where u~�t, v ~�t and w ~�t are respectively defined in (2), (2) and (2).
The terms v~�t and w ~�t may further be decomposed as

v~�t =

rvX
k=0

vJ
(k)
t + vH

(rv)
t

w ~�t =

rwX
k=0

wJ
(k)
t + wH

(rw)
t

where rv and rw are two integers (not necessarily equal) such that
0 � rv � n � 1 and 0 � rw � n� 1. Theorems 1, 2 show that

Proposition 2 Assume that (H1-H2-H3) hold, and let rv; rw 2
f0; � � � ; n� 1g. Then, there exists a constantK <1 (depending
upona; b; c; d; n; �; �0 but not on fLtvtg and fwtg), such that, for
all � 2 (0; �0] and all t � 0

k~�t � �

rvX
k=0

vJ
(k)
t �

rwX
k=0

wJ
(k)
t kp �

K
�
�c;d(Lv)�

rv=2+1 + �c;d(w)�
rw=2

�
+ k�(t;0)~�0kp:

5. A WORKED-OUT EXAMPLE

In this section, approximate expressions of the tracking error co-
variance matrix for the LMS algorithm are derived. To illustrate
our findings, it is shown in this section that first order approxima-
tion of the tracking error covariance may fail, in certain situation,
to capture the behavior of the algorithm.

� (M1) f�tgt�0 is VAR process

�t+1 = ��t + ut+1 (20)

where � (�1 < � < 1) is a scalar, futgt2Z is i.i.d Gaussian
with zero-mean and covariance matrix �2uI .

� (M2) fvtgt�0 andfwtgt�0 are i.i.d, with boundedmoments
of order r, where r > 2. Moreover: E(w0w

T
0 ) = 
2I .

� (M3) M1
0 (v), M1

0 (�) andM(�) are independent.

It may be shown that (M1–M3) implies (H1–H3). Becausefwtgt�0
and fvtgt�0 are independent, the processes fv ~�tgt�0 and fw ~�tg
are uncorrelated. Thus,

� = lim
t!1

E(~�t ~�
T
t ) =

v��2 + w�

where v� = limt!1 E(v ~�vt ~�
T
t ) and w� = limt!1 E(w ~�wt ~�Tt ).

We wish to obtain approximate expressions for v� andw�, denoted
v�� and w�� such that, for all � 2 (0; �0]

jv��v ��j � K�1=2 and jw��w ��j � K
2�1=2

where K < 1 is some constant. To that purpose, we expand v ~�t
and w ~�t to the second-order:

v ~�t =
vJ

(0)
t + vJ

(1)
t + vJ

(2)
t + vH

(2)
t ;

w ~�t =
wJ

(0)
t + wJ

(1)
t + wJ

(2)
t + wH

(2)
t

Under the stated assumptions, it follows from theorems 1 and 2
that, there exists some constant C < 1, such that for all � 2
(0; �0], we have

sup
t�0

���E(vJ (1)t (vJ(2)t + vH
(2)
t )T

��� � C�1=2

sup
t�0

���E(wJ(1)t (wJ(2)t +w H
(2)
t )T

��� � C
2�1=2

It remains to evaluate limt!1 E(vJ(0)t
vJ

(i)
t ), limt!1 E(wJ (0)t

wJ
(i)
t ),

i = 0; 1; 2 andE(vJ (1)t
vJ

(1)
t ) andE(wJ (1)t

wJ
(1)
t ). Denote: � =

�2u=(1� �2). Tedious but straightforward calculations show that

lim
t!1

E(vJ
(0)
t

vJ
(0)
t

T
) =

�2v
�(2� ��)

;

lim
t!1

E(vJ (0)t
vJ

(1)
t

T
) = ��

2�2v(d + 1)�

2(1� �2)
I +O(�);

lim
t!1

E(vJ (0)t
vJ

(2)
t

T
) =

�2�2v�(d+ 1)�

4(1� �2)
I +O(�);

lim
t!1

E(vJ
(1)
t

vJ
(1)
t

T
) =

(1 + �2)�2v�(d+ 1)

4(1 � �2)
+ O(�)

yielding the following expression for v��

v�� =
�2v
2�
I + ��2v

d+ 2

4
I +O(�) (21)



It is worthwhile to note that the first order correction does not de-
pend upon the autoregressivecoefficient�. Similarly, it can be shown
that

lim
t!1

E(wJ (0)t
wJ

(0)
t

T
) =


2

��(2� ��)
I;

lim
t!1

E(wJ
(0)
t

wJ
(1)
t

T
) = 0;

lim
t!1

E(wJ (0)t
wJ

(2)
t

T
) =


2�2(d+ 1)

4(1� �2)
I + O(
2�);

lim
t!1

E(wJ (1)t
wJ

(1)
t

T
) =


2(1 + �2)(d+ 1)

4(1� �2)
I + O(
2�):

yielding the following approximate expression for w�,

w �� =

2

2��
+

2

4

�
1 + (d+ 1)

1 + 2�2

1� �2

�
+ O(
2�):

(22)

The first order correction depends upon�. This is illustrated in fig-
ures 5 and 5, where the asymptotic tracking error variance, defined
as

lim
t!1

k~�tk2

is displayed as a function of the stepsize �. In both cases, we set:

 = 0:05, d = 10, �2v = 3 and, for every value o �, �2u = 1� �2

(so that � = 1). Two values of � are considered: � = 0 (fig-
ure 5) and � = 0:9 (figure 5)). On the figures, the value of the
asymptotic tracking error variance obtained by Monte-Carlo simu-
lations (solid-line) are compared with the approximate expressions
obtained by (i) retaining only the first term in (21) and (22) (dashed
line) or (ii) including the two terms in (21) and (22) (dashed-dotted
line). As seen on these figures, the autoregressivecoefficient strongly
affects the asymptotic tracking error variance, as predicted by the
second-order approximation.
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Figure 1: � = 0. solid line: Monte-Carlo simulation. Dashed
line: first order approximation. Dashed-dotted line: second-order
approximation
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