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ABSTRACT

In this paper, a perturbation expansion technique is introduced to
decompose the tracking error of a general adaptive tracking algo-
rithm in a linear regression model. This method allow to obtain
tracking error bound but also tight approximate expressionsfor the
moments of the tracking error. These expressionsallow to evalu-
ate, both qualitatively and quantitatively, the impact of several fac-
tors on thetracking error performance which have been overlooked
in previous contributions.

1. INTRODUCTION

An important issue in system identification, signal processing, au-
tomatic control isthat of tracking the parameter variationsin alin-
ear regression model

ye=¢{ 8 +ue; >0 N

where {y: }¢>o0 and {v: } >0 arerespectively the scalar observation
and noise, {¢:}:>o0 and {f:},>o are the d-dimensional stochastic
regressor and the unknown time-varying parameter. This model
encompassesmany different applications, including channel equal-
ization, time delay estimation and echo cancelation [5]. In the se-
quel it is assumed that the parameter variation obeys

Oi41 = 0 + wie 2

where w1 is referred to the lag-noise. To track the variations of
the parameter, it is customary to use arecursive algorithm for up-
dating an estimate 6, of the parameter (see[6, 5] and thereferences
therein). Most of these algorithms can be put in the form

ét+1 =0, + ule(ys — ¢tTét)~ (©)

where . isreferred to asthe adaptation step-sizeand L, isarandom
vector, which can be chosenin anumber of different ways. There
isavast literature on the analysisof algorithms of type (3). In most
contributions, the main goal is to obtain bounds on the tracking er-
rors. Resultsin that directions have been obtained in [6, 4, 3]. In
this contribution adifferent approachispursued. Our goal isto ob-
tain explicit expression and not only boundsfor the tracking error.
To that purpose, we will use a technique, referred to as ‘perturba-
tion expansion’, consisting in getting approximations (3) by nested
processes, with much simpler structure than the original error pro-
cess. Thisparticular decomposition enablesthe computation of ex-
plicit expressionsfor the moments and other related quantities.
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2. PERTURBATION EXPANSION: OUTLINESOF THE
METHOD

From (1) and (3), we can write
ét+1 =(- uLtﬁﬁ?)ét + pLive — wegn, (4)
whered, = 8, — 0, is the weight-error vector. Since this equation
islinear, 8:41 can be decomposed as
6, =" 0, + uvét + én

“Oop1 = (I — uLedpy )*8; “60 = b0 = —bo,

vét+1 = ([ — uLt¢?)vét —|— Ltvt, véo =0

“Oup1 = (I — pLeg; )"0 — wigr, “o =0
{“8.} is a transient term, reflecting the way the successive esti-
matesof the regression coefficientsforget theinitial conditions. {6, }
accountsfor the errors introduced by the measurement noise, {v. };
similarly, {* 6:+1 } accountsfor the errors associatedlag-noise { w: } .

Accordingto thesedefinitions, 4, and '8, obey aninhomogeneous
stochastic recurrence equation

5t+1 = ([ - llFt)(st + €t7 50 =0 (5)
= Z @(t7 5)55 (6)
s=0

where{F: } ;>0 matrix valued random process, {¢: }¢>o isa(d x 1)
vector-valued random process, and ¢ (¢, s) is defined as

(I —pF)(I —pFi_1) - (I —pFep1) t>s
O(t,s) =< 1 t=3s
0 otherwise

Here, the dependenceof é; uponthe step-size s isimplicit. Eqs(2)
and (2) may be rewritten as (5) with F; = L:¢{ and

& = Liv; measurement noise, &; = —w:41 lagnoise  (7)

Applied to the recurrence equation (5), the whole procedure goes
asfollows. Denote F; = E(F;)and Z; = F; — Fi. We may
decompose (I — pFy) according to

I —ply = (I —ply) 4 pZe. (8)

Now, decomposethe recurrence equations(5) into two separatere-
cursions:

T == uF)I” + &, I =0 ©
HY, = (- pF)HO + 02,9, HP =0 10)
5, = Jt(O) +Ht(0)' (12)



Accordingto (9), Jt(o) satisfy a deterministic inhomogeneousfirst-
order linear difference equation:

t
T =Yl s)e 12
s=0
where, as above,
(I_HFt)(]_HFt—l)"'(I—MF5+1) t>s
Y(t,s)=< 1 t=3s
0 otherwise

Under appropriateassumptionson thematrix valued sequences{ ; } ;>0

and on the excitation {¢&: }, it will be shown that, for somep > 0
there exists a constant C' < oo and o > 0 such that for all 0 <
< o

||p < C/y/p and sup ||H

sup ||.J{° l<C 13
>0

where C' < oo is aconstant dependingon { F; } and {¢: } (see be-
low). Thus, J may be considered as the leading term in the ex-
pansion, while He . may be seen as a correction term. The same
procedure can beiterated to obtain approximationsof increased ac-
curacy. For that purpose, it suffices to decompose (10) using (8),
and iterate that decomposition up to order » > 1. Using this tech-
nique, 4: may bewritten as

5o =T 4 gy (14)
where the processes /"), 0 < r < n and H"™
defined as

are respectively

‘]t(+)1 = (I HFt)

‘]t(+)1 =

H{Y, =

+€t7 =0
(I —uF)Jg" +uZtJt(T R

(I —uF)H™ + p2,J™; H™ =0,0<t<n

JD=0,0<t<r

The processesJ depend linearly on &, and polynomially in the
error Z; = Fy — Fy. It isthus feasible (examples are given be-
low) to compute the joint moments of these processes, and to ob-
tain expressions for the moments of 5™ = J© + ... 4+ J™.
Theresidual term H, t(") is, under appropriate conditions, uniformly
bounded, i.e., there existssomeconstant C' < oo and po > 0, such
that, for all 0 < p < po, we have

(15

sup IIH Mo < G2,

Upper boundsfor the constant C' are given below.

3. MAIN RESULTS

3.1. Notations and Definitions

To develop a useful theory, one typically needsto impose assump-
tionson {F} and {¢: }. Itisnot difficult to guessthat typica as-
sumptions are of the kind (i) restriction on the tail of the distribu-
tion, e.g. existence of moments and/ or exponential moments and
(ii) restriction on the dependence among the { F;} and the {&;}.
Thelatter conditions are referred to as mixing conditions. To make
more precise statements, some notations and definitionsare in or-
der.

Definition Let ¢ > 1 andlet X = {X,}.>0 bea(l x 1) vector-
valued process. Letd = (4(r))ren aseguence decreasing to zero
atinfinity. X = {X,}.>o iscalled (4, ¢)-weak dependent, if there
existsfinite constants ¢’ = {C4,--- , 4}, suchthat forany 1 <

m < s < gq,anym-tuplety, - - -, t,, andany s—m-uplet,q1,- -, b,
Wltht1§ 'Stm<tm+7"§tm+1S"'fs,itholds
sup |COV(Xt1J1 e .Xtmyim7Xtm+17im+1 e 'thJs) < 055(T)

L1, s

where X, ; denotesthe ¢-th component of X,,. Asshownin [8],
weak-mixing processes encompassa large class of models and in
particular strongly mixing processes. The following result playsa
key rolein the sequel

Proposition1 Letp > landn € N. Let G = {G:}:»o bea
(d x d) zero-mean matrix-valued process. Assumethat (8, p(n +
2)) weak-dependent and that

D+ )P < oo

Then, there exists a finite constant Dy, . (&), such that for all 5 €
{1,--- ,n}andall 0 < s < ¢ < oo, wehave

2.

e<ip < <ij<t

(16)

)J =
(17)

Gi, -Gy,

7

< Dpn(G)(t—s

pn/fj
Let B beasubfield of the basic probability space (£2,.4).

e Letq > p > 0 betwo real numbers. For any n = {nx}x>o
d x 1 vector-valued sequence, define N (p, ¢; B) asthe set

: 1/2
{n < ppa(n) (Z ||Gk||?,)
P k=s

VO0<s<tYG={Gilrso (1xd) € Lq(Q,B,P)}

Conditionsuponwhichaprocess{¢x } belongstotheset NV (p, g; B)
and expressions of the constants p;,,4(£) are given in the extended
version of this paper.

3.2. TheMain Results

We may now formulate the central results of our contribution. The
first result gives condition upon which J s uniformly bounded
in L, and provides an expression for that bound.

Theorem 1 Assumethat, for someinteger n andreal numbersq >
pz>2

o (i) F' = {F:}:>o isaveraged exponentially stable,
e (ii) F'is(d, g(n + 2)) weakly dependent, and

D+ )T < oo,

o (ii)¢={&} eN(pg; F)
Then, thereexistsa constant X' < oo (depending on F' and on the
numerical constantsp, g, n, uo, 3 but noton {&; } or onthe stepsize
parameter i), suchthatfor all 0 < p < po,forall0 < r < n

||P <K Ppyq(g)“(r_l)/% (18)

s2>1

where p,, (€) isthe constant definedin ().



Here N (p, ¢; F') isashorthand notation for N'(p, ¢; M&°(F)). To
complete our program, we need to bound the remainder term H ),
As shown below, under appropriate conditions, H ™ is uniformly
boundedin L, assoon asJ("“) is L., stable (for sufi ciently Iarge

g

Theorem?2 Letp > 2 andleta, b, c > 0 such that l/a +1/6+
1/c =1/p. Letn € N. Assumethat

o {Fi}is L.-exponentially stable,

T, < oo

Then, thereexistsa constant X’ < oo (depending onthe numerical
constantsa, b, ¢, 3, 1o, n and on the process { F; } but not on the
process{&; } or onthe stepsize parameter 1), such that for all 0 <
w < o,

sup || H{™ ||, < K sup |7V (19)
s2>0 s>0

4. PERFORMANCE OF ADAPTIVE TRACKING
ALGORITHMS

A number of useful error bounds or expressionscan be drawn from
the results derived in the previous section. We use the notations
introduced in section 1. Let » be apositive integer and p be areal
number p > 2. Finaly, let a, b, ¢, d be positive numbers such that
at 407+ =p~tandd > c. Denote: Fy = Lipf.

e (H1) I' = {I%} is L, and averaged exponentially stable,

e (H2) F'is(4,d(n + 2)) weak dependent; in addition,

sup ||Fr — E(Fy)l|s < o0,
>0

[ere]

D+ )R < oo

r=0

o (H3) {L:iv¢} € N(c,d; Fyand {w:} € N(c,d; F).
The tracking error may be expanded asf, =* 8; + u"6; + 6.,
where “6:, "9, and ' 9, are respectively definedin (2), (2) and (2).
Theterms “8; and “'4, may further be decomposed as
vét — Z 'Ujgk) + 'qurv)
k=0
wét — Z wjik) + ngrw)
k=0
wherer, andr,, aretwo integers (not necessarily equal) such that
0<r, <n-—1and0 < ry, <n—1. Theorems1, 2 show that

Proposition 2 Assume that (H1-H2-H3) hold, and let r,,r,, €
{0,--- ,n—1}. Then, thereexistsa constant i’ < oo (depending
upona, b, ¢, d, n, 3, uo butnoton{ L;v; } and {w: }), suchthat, for
al p € (0,u0]andall ¢ > 0

= uZ”J Z T, <

k=0

K (pc,d(Lv)u”/QJrl + pea(w) ™) + [|®(t,0)80] |-

n-l-l ||r

5. AWORKED-OUT EXAMPLE

In this section, approximate expressions of the tracking error co-
variance matrix for the LMS algorithm are derived. To illustrate
our findings, it is shown in this section that first order approxima-
tion of the tracking error covariance may fail, in certain situation,
to capture the behavior of the algorithm.

o (M1) {¢:}:>0 is VAR process
Q41 = kPt + U1 (20)
wherex (—1 < k < 1) isascalar, {u: }:ez isi.i.d Gaussian
with zero-mean and covariance matrix o21.
o (M2) {v:}1>0 and{w: }>o arei.i.d, with boundedmoments
of order r, where r > 2. Moreover: E(wowd ) = v*1.
o (M3) M§°(v), MG°(¢) and M(8) areindependent.
It may be shownthat (M1-M3) implies (H1-H3). Because{wt}t>0

and {v:}¢>o are independent, the processes {* f; }i>o and {* 6}
are uncorrelated. Thus,

I'= lim B(8:6])=

t—o00

vl—\“2 + wF

where "T' = lim¢ 00 E("0767) and “T' = lim, o0 E(V6°07).
Wewish to obtain approximateexpressionsfor “I" and “'I", denoted
*T" and *“T" such that, for al p € (0, po]

I'T—"T| < Ku'/?and |“T =" T| < K4*u'/?
where K < oo is some constant. To that purpose, we expand g,
and “ 8, to the second-order:

vg, — ngo) +ng1) +vJ£2) +vH£2)7
wét — wjgo) + wjgl) + wJ£2) + wH£2)
Under the stated assumptions, it follows from theorems 1 and 2

that, there exists some constant C' < oo, such that for al ¢ €
(0, po], we have

ECIOC IO o g@)T| < oyt

sup
>0

E(wjgl) (wJ£2) +w Ht(2)) < 072 1/2

sup
>0

It remainsto evaluatelimt_)oo E(" )”J(')) lim; o0 B(* T g1,
i=0,1,2and E(*JM 7Ny and E(v 7V 7). Denote: o =
o2 /(1 — x?). Tedious but strai ghtforward calculations show that

2

. v (0w ()T 0y
tli)rgo BECJET ) = (2 — pa)’

lim E(”J(O)vj(l)T) — MI-F O(“)
t—ro0 Lo 2(1 — &?) ’
lim E(WJEO)WJS)T) — MI-F O(n),

t—oo 41— k?)
T (14 m2)a§oz(d +1)

. v (v 7(1)
tli)n;o E( ‘]t ‘]t ) - 4(1 _ KQ) + O(“)
yielding the following expression for *T"
2
T=r4a a2d+2]—|—0( ) 1)



It is worthwhile to note that the first order correction does not de-
pend uponthe autoregressivecoefficient <. Similarly, it canbeshown
that

2

. w (0w (T Y
tli)nolo BCTTRT ) = pa(2 — pa) L
lim E(*J@v 707 Z o,
t—oco
2 2
im B @@ re(d+1) >
lim B("TE ) = Sy I+ 00w,
2 2
~ w w7y _ (L4 s7)(d+1) 2
tlggoE( J0RI ) = 1= w7 I+ Oy p).

yielding the following approximate expression for “T",

2 2 2
wis Y Y 1+2k 2
="+ [1+4+(d+1 O(+*p).
2e T ( +(d+ )1—,<2)+ (v"'m)

(22)

Thefirst order correction dependsupon . Thisisillustrated infig-
ures5 and 5, where the asymptotic tracking error variance, defined
as

tim |4, ?

t— o0

is displayed as a function of the stepsize ;1. In both cases, we set:
v =0.05,d =10, 02 = 3 and, for every value o s, 02 = 1 — x?
(sothat @ = 1). Two values of x are considered: < = 0 (fig-
ure 5) and x = 0.9 (figure 5)). On the figures, the value of the
asymptotic tracking error variance obtained by Monte-Carlo simu-
lations (solid-line) are compared with the approximate expressions
obtained by (i) retaining only thefirst termin (21) and (22) (dashed
line) or (i) including the two termsin (21) and (22) (dashed-dotted
line). Asseenonthesefigures, the autoregressivecoefficient strongly
affects the asymptotic tracking error variance, as predicted by the
second-order approximation.

tracking error variance

L L L L L L L
0 001 0.02 0.03 0.04 0.05 0.06 0.07 0.08
stepsize

Figure 1. k = 0. solid line: Monte-Carlo simulation. Dashed
line: first order approximation. Dashed-dotted line: second-order
approximation
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