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ABSTRACT

This paper explores the statistical properties of underwater
reverberation present in active sonar systems. The interfer-
ence to signal processing which results from reverberation
can be extensive, and is particularly acute when the bound-
aries (surface, bottom) of the water column are nearby. Of
particular interest are situations where there may be weak
targets masked by reverberation dominating the returning
signal. The reverberation will be represented as the output
of a linear system with the transmitted signal as an input.
The random nature of the reverberation will be accounted
for by using random parameters in the linear model, the
most important of which are those parameters impacting the
spatial distribution of the reverberation. Time delay esti-
mation will be used to analyze reverberant signals obtained
from a sonar system operating in a shallow water environ-
ment. The statistics of the linear models obtained from these
analyses will be computed and discussed.

1. DISCUSSION

In this work, an analysis of active sonar data collected in a
shallow water environment will be presented. The examples
taken will be from data collected monostaticly by a high
frequency array. Due to the proximity of the surface and
bottom in this type of environment, these data are heavily
corrupted by unwanted backscattering from the boundaries.
The ultimate goal of this work is to recover weak signals
due to targets from returns dominated by these reverberant
fields. To this end, it is necessary to model the ‘channel’
realized by the environment, viewing the reverberation as
having been generated by the linear system,

xr[n] = cr[n] � s[n] , (1)

wherecr[n] is the reverberant channel,s[n] is the transmit-
ted signal, andxr[n] is the return due to reverberation. This
approach is in the spirit of the models proposed by Middle-
ton [1, 2], which describe reverberation as the linear sum
of multiple simple scattering processes. It is convenient,
therefore, to model the target returnxt[n] similarly, giving

the system

x[n] = (ct[n] + cr[n]) � s[n] +mn[n] , (2)

as a data model. In Equation 2,ct is the linear model for the
scattering due to the target, if present. The measurement
noise,mn, will be assumed to be complex Gaussian, i.e.

mn � N �
0; (�2=2)I

�
+ jN �

0; (�2=2)I
�

. (3)

1.1. Time Delay Estimation

To process these signals, the approach has been taken to
model the linear systems rather than process the data by
matched filters. Many sorts of matched filters could be at-
tempted. For example, filters matched either tos[n] (tradi-
tional matched filter) or toct[n] � s[n] (matched target fil-
ter) may be tried. Ifct[n] is extended to include the effects
of multipath and propagation, the matched target filter be-
comes a matched field processor. The linear processes are
modeled by performing time delay estimation on the data
recordx[n]. For a basic explanation of time delay estima-
tion, see reference [3]. This work has also been extended
to account for the effects of biasing in the presence of very
closely spaced signal components [4].

This approach is a fundamental departure from much
of the current work, and is summarized (in the frequency
domain) in Table 1. Note that the traditional matched filter,
Tmf , will generate a test statistic which is the autoambiguity
function of the transmit convolved with the composite target
and reverberation channel. The matched target filter,Tmt,
will be similar to the standard matched filter, including an
additional convolution due to the target model. The third
statistic,Ttde, which is due to time delay estimation, will
generate an estimate of the underlying linear modelsct[n]
andcr[n]. This is because

ttde[n] � FT �1 fCt + Cr +Mn=Sg , (4)

where the approximation indicates that the form of the chan-
nel model may be restricted for either the target or the re-
verberation. In addition, the spectral division implied by



Mn=S requires that processing only be attempted in fre-
quency bands occupied by the transmissionS.

The restriction imposed on the channel model by time
delay estimation is that the channel be impulsive. This means
that the signals generated by the reverberant process are lin-
ear sums of time delayed and scaled transmits. An impul-
sive channel is modeled as follows,

c[n] =

LX
i=1

ai�[n� �i] , (5)

where a mixed notation has been used to represent the sam-
pled signalc[n]. By including a continuous time variable,
�i, in the discrete time index of�[n], it is implied that�[n]
is the sampled signal resulting from the delay of the under-
lying continuous time signal. This may be accomplished by
interpolation and decimation, or by application of sampling
theory, which is presented in the next section.

Processor Test Statistic
matched filter
(transmit)

Tmf = f(Ct + Cr)S +MngS�

matched filter
(target)

Tmt = f(Ct + Cr)S +MngC�t S�

time delay
estimation

Ttde � f(Ct + Cr)S +Mng=S

Table 1: Summary of Detection Processors

1.2. Sampled Signals Delayed by Arbitrary Continuous
Time

Convolution of the transmitted signals[n] with �[n��i] will
yield the signalx[n] = s[n � �i]. It can be shown that this
signal can be represented by

s[n� �i] =
1

N

N�1X
k=0

Ske
+j2�(n k

N
�fk�i) , (6)

whereSk is the Fourier series expansion coefficient from
thekth frequency bin ofs[n]. The frequencyfk is evaluated
at the analysis frequency indicated by the continuous time
signal,

fk = fs
D � k

N + fc , 0 � k � N
2 � 1

fk = fs
D � ( kN � 1) + fc , N

2 � k � N � 1 ,
(7)

wherefs is the sampling frequency,fc is the center fre-
quency of the system, andD is the decimation rate. These
equations provide the fundamental result required to per-
form time delay estimation. Most importantly, time delays
are not restricted to integer multiples of the sampling in-
terval. This implies that resolution of very closely spaced
signal components may be possible.

2. DATA ANALYSIS

A series of active transmissions made in a shallow water
channel of approximately 120 feet of water have been an-
alyzed. This is high frequency data, generated from a cw
transmit of approximately 10 milliseconds. The array data
has been beamformed in a direction containing a target, and
a portion of the beam selected which is dominated by re-
verberation. These data records were analyzed by time de-
lay estimation to recover the impulsive channel model. Im-
pulses in the model near the target have been manually re-
moved to restrict attention to the reverberant portion of the
signals.

2.1. Reverberation Model

A model of the reverberation was sought to perform sys-
tem design. Such a model would have the advantages that
different sonar transmissions could be simulated without re-
verting to an in water test, and that independent trials could
be generated. To develop this model, each component (im-
pulse) in the estimated channel is interpreted as the backscat-
tering from a simple point target. Next, the sonar equation is
used to calculate the equivalent target strengthTS of each
scatterer, given the amplitude and delay (range) estimates
from the time delay estimation.

RL = XL� TL+ TS (8)

The component amplitude is related to the receive levelRL
by ai = 10(RL)=20. The transmission loss for this system
is given byTL = 2 � (� 20log10r + :004 r), wherer is
the range to the component in yards.XL is the transmit
level. The variable� is included in the transmission loss to
modify the spreading law for components from time delay
estimation. All quantities in equation 8 are in dB.

Figure 1 gives a composite picture of the locations and
strengths of the reverberation components for this data set.
Each point represents the estimate of one impulse in the
channel modelcr[n]. The delay is expressed as a range
along the x axis, and the amplitude is expressed in dB along
the y axis. The upper figure shows the result for a spherical
spreading law (� = 1 ). This had to be modified to a value
of � = :1244 for the components generated by time delay
estimation, and is shown in the lower figure. This modifi-
cation is necessary because, as range increases, the compo-
nents from the time delay estimation span larger numbers of
actual scatterers and have artificially larger amplitudes.

Figure 2 shows the distribution of the amplitudes of the
reverberation components. The amplitudes are approximately
Gaussian in the dB domain, implying the log-normal distri-
bution

pa(a) =
1

2��aa
e
�

1

2�2
a

(lna��a)
2

. (9)
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Figure 1: Aggregate of Delay Locations and Equivalent Tar-
get Strength for Eight Active Transmissions. A modified
spreading law,� = :1244, must be used to generate compo-
nents with an equivalent target strength of�87:42 dB.

In Equation 9,�a = ln 10=20�dB and�a = ln 10=20�dB,
where�dB and�dB are derived from the distribution of the
amplitudes in the dB domain.
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Figure 2: Histogram of Equivalent Target Strength for Re-
verberation Components. Amplitude is Normal when rep-
resented in dB, implying a Log-Normal distribution.

Figure 3 shows the statistics for the spatial distribution
of the reverberation components. The upper figure shows a
histogram of the reverberation components’ delays, com-
piled for the eight pings in this experiment. This figure
shows the delay locations to be approximately uniform over
the processing interval. Delays corresponding to a target
have been removed at approximately 100 feet, leaving that
bin nearly empty. The concentration of components near 40

feet may be due to the specular returns from the bottom or
surface, and would not be present in a data record further
out in range. The bottom figure gives the spatial correlation
of the reverberation, again using the delay locations from
the time delay estimations from the eight pings. This fig-
ure is striking in that any structure to the spatial correlation
is 20 dB down from the zero lag point, indicating that the
reverberation is strongly (spatially) white.

These analyses characterize the statistics of the rever-
beration components obtained from time delay estimation.
Since the ultimate interest is in using this information to en-
hance target detection, it is necessary to derive the proper-
ties of the random process implied by these statistics. Once
that is understood, stratagem can be developed to process
data corrupted by strong reverberation.
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Figure 3: Correlation and Histogram of Spatial Data (de-
lays) from Time Delay Estimation. Target has been removed
at approximately 100 ft, data is spatially white and uncorre-
lated.

2.2. Statistics of the Random Process due to Reverbera-
tion

To perform detection processing of a data record, the statis-
tics of the vector of (complex) samples realized by the ran-
dom process are required. The first two moments of this
process will be a mean vector�, which is the same length
N as our data vectorx, and a covariance matrixR = [rp;q ]
which isN by N . To evaluate the statistics of this random
process, the moments of the random process containing just
one component will be calculated. Since the reverberation is
simply the sum ofL independent and identically distributed
components, the statistics of the random process follow by
simple induction. Recall that the reverberation is modeled
asL replicas of the transmit delayed byrandomdelays, each
scaled byrandomamplitudes.



The mean of a delayed signal, when the delay is a uni-
formly distributed random variable (p(�) � U[�0���=2; �0+
��=2] ), is:

Efs[n� � ]g =
1

N

N�1X
k=0

Ske
j2�(n k

N
�fk�0)

sin 2�fk��

2�fk��
.

(10)
For single sideband systems with a high carrier frequency,
2�fk�� � 1, and the mean value for the process isEfs[n�
� ]g = 0. Under these conditions, the covariance matrix,
[rp;q ] = Efs[n� � ]sh[n� � ]g, is given by

rp;q =
1

N2

N�1X
k=0

N�1X
l=0

fSkS�l ej2�(p
k

N
�q l

N
)�

Z +1

�1

p(�)e�j2�(fk�fl)�d�g . (11)

Furthermore, if the location of a reverberation component is
equally likely anywhere in the processing interval,p(�) �
U[0; N ]=Fs, and

rp;q =
1

N2

N�1X
k=0

jSkj2ej2�(p�q) kN . (12)

There are two basic cases which help interpret this result.
Recall the data model given in equations 2 and 5 and the
form of the traditional (whitened) matched filter,

tmf =
shR�1x

jshR�1sj1=2 . (13)

The first is the wideband case. Assuming that the trans-
mit signal has approximately uniform energy in the process-
ing band, the covariance matrix forL components becomes
[rp;q ] = (L � Efjaj2g) 1

N I . The inverse of the covariance
matrix, including the measurement noise is

R�1 = (
1

N
(L � Efjaj2g) + �2)�1 I . (14)

Since this is simply a scaled identity matrix, the implication
is that the traditional whitened matched filter is no better
than a simple matched filter becausetmf = shx=

p
shs.

The second case is the narrowband case. For simplicity
assume that the transmit has one non-zero frequency com-
ponentSk. This is equivalent to the subspace detection
problem [5], with an interfering subspace of rank 1. The
covariance matrix forL components in this case is[rp;q ] =
(L � Efjaj2g)ukuhk , whereuk is the Fourier vector at the
frequencyfk. In this caseuk is simply a scaled version of
the transmit signals. The inverse of the covariance matrix,
including the measurement noise is

R�1 =
1

�2

�
I � L � Efjaj2g

L � Efjaj2g+ �2
uku

h
k

�
. (15)

It can be shown that this result also gives a whitened matched
filter statistic which is proportional to the simple matched
filter.

In conclusion, observe that whitening, or subspace de-
tection, is ineffectual against reverberant interference as it
has been modeled in this paper. The problem is that detec-
tion of a signal is attempted in an environment composed
of other copies of that signal. If the reverberation is such
that components can be present at any location, there is no
recourse in matched filter or subspace detection theory to
improve detection performance over a simple matched fil-
ter.

3. SUMMARY

A model has been presented for the reverberation due to un-
derwater active transmissions. This model is motivated by
the classical view of reverberation as a scattering process
and is based on the analysis of test data by time delay esti-
mation. The analysis and model presented herein are attrac-
tive to the system designer in the simplicity of the result and
in the immediate applicability of the statistics of the model.
This analysis will be extended in future work to include pro-
cessing for detection of structured targets in these types of
interference.
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