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ABSTRACT

We consider the problem of separating adaptively p syn-
chronous user signals that are received by an m-element
antenna array without the use of training sequences. We
establish a set of necessary and su�cient conditions for
perfect recovery of all the transmitted signals. Based on
these conditions we propose optimization criteria that lead
to adaptive algorithms for e�cient blind source separa-
tion of non-Gaussian signals. Convergence analysis shows
important global convergence properties of the proposed
techniques. Combined with their low complexity, these
features make the proposed algorithms good candidates
for adaptive source separation.

1. INTRODUCTION

The problem of separating a number of independent source
signals that are transmitted in the same frequency band
and propagation environment is one of increasing practical
importance. Interesting applications arise in the �eld of
wireless communications in systems that employ CDMA
(code division multiple access) or channel RWC (reuse
within cell) - also called SDMA (space division multi-
ple access) systems { see [4]. Given the desire to design
bandwidth-e�cient systems, as well as receivers that are
able of tracking adaptively the channel changes, it is of in-
terest to perform the source separation blindly, i.e. without
the use of training sequences.

Whereas popular source separation methods such as
MUSIC [5] and ESPRIT [3] stem from the so-called sub-
space approach, here we consider adaptive alternatives. An
important issue when such techniques are used is their abil-
ity to �nd simultaneously all the transmitted signals. In
order to derive suitable optimization criteria for algorithm
development, we �rst establish a set of necessary and suf-
�cient conditions for perfect recovery of all the signals.
These conditions involve both fourth- and second-order
moments of the receiver outputs. The study leading to the
derivation of these conditions parallels the one performed
by Shalvi and Weinstein in [6] for the dual problem of
single-user channel equalization.

Based on the derived conditions, we propose optimiza-
tion criteria for blind source separation. The analysis of
these criteria shows that (in the case of p = 2 users) they
do not contain undesirable stable stationary points. This
makes the corresponding algorithms good alternatives to
other techniques (such as [7], [1]) that may converge to so-
lutions that recover only some of the transmitted signals.

�This work was performed while the author was with Infor-
mation Systems Laboratory, Stanford University, Stanford, CA
94305, USA.

The rest of the paper is organized as follows. In Sec-
tion 2 we present our assumptions and we derive the nec-
essary and su�cient conditions for perfect recovery of all
the transmitted signals. In Section 3 we propose and an-
alyze some optimization criteria based on the conditions
of Section 2, whereas Section 4 contains some computer
simulation results that verify the algorithms' expected be-
havior. Finally, Section 5 contains our conclusions.

2. IDENTIFIABILITY CONDITIONS

We assume that p i.i.d. and mutually independent zero-
mean discrete-time sequences ai(k) i = 1; : : : ; p that share
the same statistical properties are transmitted through a
p�m memoryless MIMO (multiple input - multiple out-
put) linear channel. The m channel outputs are subse-
quently �ltered by an m � p spatial �lter whose outputs
zj(k), j = 1; : : : ; p should ideally match the transmitted
signals ai(k). The receiver outputs can then be written
(in baseband) as:

zj(k) = GT
j A(k) (1)

where A(k) = [a1(k) � � � ap(k)]T , Gj = [gj1 � � � gjp]T (T
denotes transpose of a vector or matrix). Gj represents
the channel/beamformer cascade that links the p input
signals to the j-th output. Notice that due to the above
assumptions A is stationary { however in order to obtain
A(k�1), A(k) must be shifted by p positions downwards.
Notice that we have side-stepped the received signal model
as we will work in the channel/beamformer cascade domain
(G).

In analogy to [6] we can write for the receiver outputs:

Ejzj(k)j2 = �2a

pX
l=1

jgjlj2 ; j = 1; : : : ; p (2)

K (zj(k)) = Ka

pX
l=1

jgjlj4 ; j = 1; : : : ; p (3)

where Ka is the kurtosis and �2a the variance of any ai(k)
(since they are i.i.d.), de�ned as

Ka = K(ai) = E
�
jaij4

�
�2E2

�
jaij2

�
�jE

�
a2i
�
j2

�2a = E(jaij2) (4)

We are interested in retrieving ai(k), i = 1; : : : ; p; based
only on the statistics of the equalizer outputs zj(k), j =
1; : : : ; p. In the following we will denote the imaginary j
by

p�1 in order to avoid confusion with other indices.
As is typically assumed in blind deconvolution, we will

allow each transmitted signal to be recovered up to a



unitary scalar rotation. Therefore blind recovery will be
achieved if (after suitable reordering of the equalizer out-
puts) the following holds:

zj(k) = e
p�1�jaj(k) (5)

for some �j 2 [0; 2�) and all j 2 f1; : : : ; pg. Based on (2)
and (3) we can formulate the following theorem:

Theorem I: If each ai(k), i = 1; : : : ; p is an i.i.d. zero-
mean sequence, fai(k)g, faj(k)g are statistically indepen-
dent for i 6= j and share the same statistical properties,
then the following set of conditions are necessary and suf-
�cient for the recovery of all the transmitted signals at the
equalizer outputs:

(C1) jK(zj(k))j = jKaj ; j = 1; : : : ; p
(C2) Ejzj(k)j2 = �2a ; j = 1; : : : ; p
(C3) E(zi(k)z

�
j (k))=0; i 6= j

Proof:

Necessity: To achieve perfect recovery (5) must hold,
from which (C1) and (C2) follow immediately and (C3)

follows since E
�
ai(k)a

�
j (k)

�
= 0 for i 6= j (� denotes com-

plex conjugate).

Su�ciency: From (3) and (C1) we get
Pp

l=1
jgjlj4 = 1.

From (2) and (C2) we getPp

l=1
jgjlj2 = 1. Therefore Gj must be of the form

Gj = [0 � � � e
p�1�j 0 � � � 0]T (6)

where the single non-zero element can be at any position.
Combining (C3) with (1) we get:

GH
i Gj = 0 ; i 6= j (7)

where H denotes Hermitian transpose. According to (6)
and (7), Gi and Gj (i 6= j) cannot have a non-zero element
at the same position. This results to a set of Gj 's j 2
f1; : : : ; pg whose non-zero elements are in positions that
correspond to (possibly rotated) versions of the p di�erent
inputs aj(k). Therefore, after re-ordering, we obtain (5)
and perfect signal separation has been achieved. 2

3. BLIND SEPARATION CRITERIA

In the following we denote r2ij = jgij j2. Theorem I suggests
the following optimization criterion:8><

>:
min
G

F1(G) = �
pX

j=1

jK(zj)j

subject to: GHG = I

(8)

where G = [G1 � � �Gp] and I is the p� p identity matrix.
G can be written in terms of the p�m and m� p channel
and beamformer matrices C, W, respectively, as

G = CW (9)

Notice the full symmetricity in (8) which implies that if
G is a stationary point of the cost function (8), then GH

will be a stationary point too. We now investigate the
stationary points of (8) in the case of p = 2 users.

For any candidate stationary point G we consider the
following perturbations:

G
0 = GU (10)

where U can be any of the following four 2 � 2 matrices

UI;II =

� p
1�� �p�

�p� p
1��

�

UIII;IV =

� p
1�� �p�1p�

�p�1p� p
1��

� (11)

Notice that all four matrices in (11) are unitary, as is re-
quired to guarantee G0HG0 = I. Expressing jK(zj)j =Pp

l=1
jgjlj4 perturbations I and II give

F1(G
0) ' F1(G)� 2

p
� �I

�I =
�
(r211�r221)Re(g�11g21)+(r212�r222)Re(g�12g22)

	
(12)

whereas perturbations III and IV give

F1(G
0) ' F1(G)� 2

p
� �II

�II =
�
(r211�r221)Im(g�11g21)+(r212�r222)Im(g�12g22)

	
(13)

Combining (12) and (13) it turns out that a necessary con-
dition for a solution to (8) to be a stable stationary point
is:

(r211 � r221)g
�
11g21 + (r212 � r222)g

�
12g22 = 0 (14)

Invoking the orthogonality constraint GH
1 G2 = 0 Eq. (14)

gives
[r211 � r221 � r212 + r222]g

�
11g21 = 0 (15)

From (15) it turns out that the only possible non-desirable
solutions on GHG = I satisfy:�

r211 r221
r212 r222

�
=
h
1=2 1=2
1=2 1=2

i
(16)

We will now show that solutions of the type (16) cannot be
local minima of the cost function (8). For any perturbation
G0 of a stationary point G that satis�es (16) we can write�

r0211 r0221
r0212 r0222

�
=
h
1=2+�11 1=2+�21
1=2+�12 1=2+�22

i
(17)

As G0 must lie on G0HG0 = I, (17) gives

�11 + �12 = 0
�21 + �22 = 0 (18)

Using (18) and (16) we get (up to jKaj):
F1(G

0) = �P2

j;l=1
r04jl = �P2

j=1;2
r4jl �

P2

j=1;2
�2jl

= F1(G)�P2

j=1;2
�2jl < F1(G)

(19)
Hence, no solution satisfying (16) can be a local minimum
of the cost function (8).

As the orthogonality constraint in (8) may not be easy
to satisfy in practice, we may relax it by penalizing the
non-orthogonality with an additive term in the cost func-
tion:8><
>:

min
G

�
pX

j=1

jK(zj)j + �
X
i<j

jE(ziz�j )j2

subject to: GH
j Gj = 1; 8j 2 f1; : : : ; pg

(20)



By choosing � = 2jKaj (20) gives8><
>:

min
G

F2(G) = �
pX

j=1

pX
l=1

jgjlj4 + 2

pX
i<j

jGT
i G

�
j j2

subject to: GH
j Gj = 1; 8j 2 f1; : : : ; pg

(21)
We now investigate the stationary points of (21) in the case
p = 2 by constructing the following Lagrange function:

L(G; �)=F2(G)��1(
2X

l=1

jg1lj2�1)��2(
2X

l=1

jg2lj2�1) (22)

The stationary points of (21) satisfy the following system

of equations resulting from @L(G;�)
@g�

ij

= 0:

g11(jg11j2 � jg21j2 + �1=2) = g12g21g
�
22 (23a)

g12(jg12j2 � jg22j2 + �1=2) = g11g22g
�
21 (23b)

g21(jg21j2 � jg11j2 + �2=2) = g11g22g
�
12 (23c)

g22(jg22j2 � jg12j2 + �2=2) = g12g21g
�
11 (23d)

jg11j2 + jg12j2 = 1 (23e)

jg21j2 + jg22j2 = 1 (23f)

We now consider separately the two following cases:

� At least one coe�cient gij is zero.

We assume e.g. that g11 = 0. Then (23e) gives jg12j2 = 1.
Also because of (23a) at least one of g21 and g22 must be
zero too. We �rst examine the case g21 = 0, which gives
through (23f) jg22j2 = 1, corresponding to the following
setting:

G =

�
0 0

e
p�1�12 e

p�1�22

�
(24)

Notice that with the setting (24) both equalizer outputs
retrieve the same input signal, it is therefore clearly not a
desired solution. For G in (24) we have F2(G) = 0. Now
we consider the following perturbation:

G
0 =

� p
� 0

g12
p
1� � g22

�
(25)

where � is a small positive number. Clearly G0 satis�es
the constraints (23e),(23f). We also have:

F2(G
0) = �(p�)4�(p1��)4�1+2(1��) = �2�2 < 0 (26)

Therefore F2(G
0) < F2(G) and hence the setting (24) can-

not be a local minimum.
We now examine the case g22 = 0, for which jg21j2 = 1

yielding

G =

�
0 e

p�1�21

e
p�1�12 0

�
(27)

which is clearly an optimum desired setting. For this set-
ting F2(G) = �2 which is also the global minimum value
of F2. Therefore this point is a global minimum. The same
results hold accordingly when any of the four coe�cients is
zero, yielding the absence of undesired local minima when
at least one of the coe�cients is nonzero.

� All coe�cients gij are nonzero

We now write the system of equations (15) as:

r211(r
2
11 � r221 + �1=2) =  (28a)

r212(r
2
12 � r222 + �1=2) = � (28b)

r221(r
2
21 � r211 + �2=2) = � (28c)

r222(r
2
22 � r212 + �2=2) =  (28d)

r211 + r212 = 1 (28e)

r221 + r222 = 1 (28f)

where  = g�11g12g21g
�
22. As

@2L(G; �)

@g11@g�11
= �r211 + r221 � �1 (29)

must be real it turns out that �1 is real. Similarly, �2 is
real too. Therefore  is real too which gives  = �. We
also �nd by combining (28a),(28b) and (28c),(28d):

�1 = 

�
1

r211
+

1

r212

�
(30a)

�2 = 

�
1

r221
+

1

r222

�
(30b)

By combining (28a),(28c) and (28b),(28d) we get

1

r211
+

1

r221
=

1

r212
+

1

r222
(31)

From (28e), (28f) and (31), r211 and r222 must satisfy

�r411 � (2+�)r211 + 1 = 0 (32a)

�r422 � (2+�)r222 + 1 = 0 (32b)

where � is given by �=
1�2r2

11

r2
11
(1�r2

11
)
. From (32a),

(32b), r211 and r222 satisfy the same quadratic equation
�x2�(2+�)x+1 = 0. The corresponding binomial has al-
ways a positive discriminant, however only one of its two
solutions is in the (0; 1) interval (where r211 and r222 must
belong). Therefore the simultaneous satisfaction of (32a)
and (32b) requires that

r211 = r222 (33)

and hence
r212 = r221 (34)

Now F2(G) can be written in terms of only one of the four
coe�cient magnitudes as

F2(G) = �2+4r211
�
1�r211

�
(2 + cos �) (35)

where � = �11+�22��12��21 and gij = rije
p�1�ij . We

now consider the following perturbation

G
0 =

� p
r211+�e

p�1�11
p
r221��e

p�1�21p
r212��e

p�1�12
p
r222+�e

p�1�22

�
(36)

where � is a small (positive or negative) number. For G0

we have similarly to (35):

F2(G
0) = �2+4(r211+�)(1�r211��) (2 + cos �)

= �2+4
�
r211(1�r211)+�(1� 2r211)��2

�
(2 + cos �)

(37)



If r211 < 1=2, then we get

F2(G
0)
n

> F2(G) ; � > 0
< F2(G) ; � < 0 (38)

whereas if r211 > 1=2, we get

F2(G
0)
n

< F2(G) ; � > 0
> F2(G) ; � < 0

(39)

Hence all the settings where all four coe�cients are
non-zero and not equal between them are saddle
points. If r211=1=2, we obtain from (37) F2(G

0) =

�2+4
�
r211(1�r211)��2

�
(2 + cos �) < F2(G). Therefore

this setting cannot be a local minimum either. Hence there
are no local minima for settings all coe�cients of which are
non-zero. We summarize the above results in the following
theorem.

Theorem II: The minimization problems (8) and (21) have
no undesired local minima for p = 2, provided that the in-
puts faig are non-Gaussian (Ka 6= 0).

The results of Theorem II will equally hold in the beam-
former W parameter space if the channel matrix C in (9)
is full column rank.

4. COMPUTER SIMULATION

In order to test the performance of the constrained multi-
user criteria we have implemented the stochastic gradient
algorithm corresponding to the criterion (21) 1 for the fol-
lowing 2 � 2 channel matrix:

C =

h
1=
p
2 1=

p
2

�1=
p
2 1=

p
2

i

(notice that C is full column rank). We initialize the
2 � 2 beamformer with Wo = I, so that at the beginning
r211+r

2
12 = 1; r221+r

2
22 = 1. We then test the algorithm for

the case that each of the two sources belongs equi-probably
to a 4-QAM alphabet. Notice that this is a sub-Gaussian
distribution (Ka < 0). We add to the channel output
random Gaussian noise of SNR=30 dB and then run the
stochastic-gradient algorithm corresponding to (21) with a
step-size of � = 0:01.

Figure 1 shows the performance of the algorithm. The
algorithm converges quickly to a setting that recovers both
transmitted signals at its outputs. The two left-most plots
show the eye patterns obtained at each output after conver-
gence, whereas the two right-most plots show the evolution
of each output's squared error with respect to the corre-
sponding transmitted input (in order to obtain these plots
we �rst had to remove the arbitrary phase shift introduced
by the blind algorithm). We have run several other inde-
pendent runs of this experiment (for both sub-Gaussian
and super-Gaussian inputs), which all yielded similar re-
sults, thus verifying our theoretical expectations according
to Theorem II.

5. CONCLUSIONS

We have studied the problem of multi-user blind signal sep-
aration in the case of independent inputs that have a com-
mon statistical distribution and are transmitted through

1Due to the lack of space we do not present here the stochas-
tic gradient algorithms corresponding to our proposed criteria.
The algorithms (which are easily derived from (8) and (21)) can
be found in [2].
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Figure 1. Blind separation of two sub-Gaussian
inputs

a linear memoryless MIMO channel. We have �rst estab-
lished su�cient and necessary conditions for perfect recov-
ery of all the signals in this case. Based on these conditions
we have developed optimization criteria for this problem
that lead to stochastic gradient-type adaptive algorithms.
The analysis of the two proposed constrained criteria in the
simple case of two sources has yielded the important prop-
erty of global convergence to perfect recovery settings, thus
avoiding the problem of locking multiple times to the same
input signal while missing other signals. These results have
been obtained in the overall channel/beamformer cascade
parameter space but hold also in the beamformer space
alone if the channel matrix is full column rank. We also
presented a computer simulation example that shows ac-
cordance with our theoretically expected behavior of the
algorithms.
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