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ABSTRACT

We consider the problem of estimating the order of the phase
of a complex valued signal, having a constant amplitude
and a polynomial phase, measured in additive noise. A new
method based on the bootstrap is introduced. The proposed
approach does not require knowledge of the distribution of
the noise, is easy to implement, and unlike existing tech-
niques, it achieves high performance when only a small
amount of data is available. The proposed technique can
be easily extended to non-stationary signals which have a
polynomial amplitude and phase, provided a consistent es-
timator for the parameters can be obtained.

1. INTRODUCTION

Non-stationary signals encountered in communications, sonar,
radar, speech and biology often involve amplitude and/or
the frequency modulation of a carrier signal. The so-called
amplitude modulated-frequencymodulated signal can be writ-
ten as the complex representationz(t) = a(t) expfj�(t)g,
wherea(t) and�(t), t 2 [T1; T2], T1; T2 < 1, are the
amplitude and phase functions. In practice, the signalz(t)
is embedded in stationary complex noiseU(t) so that the
received signal is given by

X(t) = z(t) + U(t) ; T1 � t � T2 : (1)

Assume that the amplitude ofz(t) is constant1 and that the
signal is appropriately sampled, yielding valuesxt, t =
0; : : : ; n� 1, which are observations from

Xt = a0 expfj

qX
k=0

bkt
kg+ Ut ; t = 0; : : : ; n� 1 ; (2)

wherea0 is real valued, representing the amplitude,bk, k =
0; : : : ; q, are the real valued phase coefficients of the sig-
nal andq is a fixed integer. The objective is to determine
the order of non-linearity of the phase based on estimates
of the unknownsa0; b0; : : : ; bq, given observationsxt, t =
0; : : : ; n� 1.

A classical approach for estimating the parameters of
the model in (2) is the method of maximum likelihood. This,

1The more complex case wherea(t) is time-varying, modeled as a
polynomial of finite order will be briefly discussed in section 4.

however, requires the distribution of the complex noiseUt
t = 0;�1;�2; : : : , to be known. OftenUt is assumed to be
white and Gaussian. Also, maximum likelihood algorithms
are very complicated for a phase orderq � 3. These diffi-
culties have led to the development of parameter estimation
techniques that are suboptimal, but are computationally in-
expensive. Suboptimal methods for estimating the parame-
ters of a constant amplitude polynomial phase signal were
reported, for example, in [1, 4]. Among these techniques,
the only one that addresses the problem of order selection
is the one based on the polynomial phase transform, pro-
posed by Peleg and Porat [5]. It gives bases for estimating
the orderq of the polynomial phase. However, this model
selection method relies on the Cram´er-Rao bound and thus
assumes the distribution of the noise to be known.

Many model order selection procedures exist in the case
of a linear model, which may be obtained for the phase of
(2) at high signal-to-noise power ratio. Popular techniques
are Akaike’s information criterion, Rissanen’s minimum de-
scription length criterion, and Hannan and Quinn’s crite-
rion (see for example [3]). These criteria are often used
in the context of estimating the parametersp andq of an
autoregressive moving average process of order(p; q). Ex-
perimental as well as theoretical results indicated that the
model criteria do not yield definitive results. In the absence
of any prior information regarding the physical process that
resulted in the data, one is often left with trying different
model orders and different criteria and, ultimately, interpret-
ing the different results.

In this paper we introduce an approach for selecting the
order of a constant amplitude, polynomial phase signal us-
ing the bootstrap [2, 9]. Besides the theoretical and empiri-
cal properties of bootstrap selection procedures such as the
ones discussed in [7], there are good reasons to use a boot-
strap model selection procedure. Bootstrap methods are
simple and computationally efficient (see for example [11]).
If one uses a bootstrap approach for the model selection and
for the subsequent inference, then the bootstrap observa-
tions generated for model selection can also be used in the
inference procedure. Thus, the model selection procedure
can be done at no extra computational cost.

Our approach for model selection is powerful in situ-
ations where the sample size is small and the distribution
of the noise is unknown. The only assumption we make is
that the noise sequence is identically and independently dis-
tributed. However, we will discuss later how this assump-



tion can be alleviated. The results presented in this paper
are based on a constant amplitude, polynomial phase signal,
but can easily be extended to non-stationary signals which
have a polynomial amplitude and phase, provided a consis-
tent estimation technique for the parameters of such signals
is available. An outline of the paper follows.

Section 2 introduces our approach to selecting the model
order of a constant amplitude, polynomial phase signal, us-
ing the bootstrap. In Section 3, we present results with sim-
ulated data and measure the performance with the empirical
probabilities of selecting various models. We briefly discuss
how the techniques presented in section 4 can be extended
to model non-stationary signals, having a polynomial am-
plitude and a polynomial phase.

2. A BOOTSTRAP APPROACH FOR MODEL
SELECTION

2.1. Parameter Estimation

For the sake of clarity, we will assume that the signal-to-
power ratio (SNR), defined to bea20=�

2
U , where�2U is the

power of the noise, is sufficiently high. This assumption can
be alleviated, but the bootstrap procedure for model order
selection to be introduced in the next subsection will need to
be altered to cater for other estimators (see section 4). Also,
and without loss of generality, we assume thata0 = 1.

Let the phase ofzt, described in (2), be given by

�t =

qX
k=0

bkt
k; t = 0; : : : ; n� 1 ; (3)

b = (b0; : : : ; bq)
0 be a vector ofq + 1 phase coefficients

andq be a fixed integer. Under the assumption that the SNR
is large one can approximate the signal given in (2) by

Xt � expfj(�t +Wt)g = expfj�̂tg ; (4)

withWt being a real zero-mean independent noise sequence
with variance�2W = �2U=2 [8, 1].

In the sequel we will base our procedure on parame-
ter estimates obtained through the method of least squares,
which requires that the phase be unwrapped [1]. The un-
wrapped phasê�t, t = 0; : : : ; n � 1, can be written in the
matrix form

�̂ = H b+W; (5)

where�̂ = (�̂0; : : : ; �̂n�1)
0,W = (W0; : : : ;Wn�1)

0 and

H =

0
BB@

1 0 0 � � � 0
1 1 1 � � � 1
...

...
... � � �

...
1 n� 1 (n� 1)2 � � � (n� 1)q

1
CCA :

The least-squares estimate forb is then given by

b̂ = (H0H)�1H0�̂: (6)

2.2. Model Selection

In practical situations the model orderq is unknown. We
wish to select a subset of the parametersfbkg, k = 0; : : : ; q,
to fit �̂t to the model given in (3). The problem is stated
as follows: given�̂0; : : : ; �̂n�1, estimate the parameterq.
This can be formulated as a model selection problem in
which we select� from f0; : : : ; qg and each� corresponds
to the model in (4) of order�, i.e.,

�̂t =

qX
k=0

bkt
k +Wt ; t = 0; : : : ; n� 1 :

Under�, we haveb� = (b0; : : : ; b�)
0 which is obtained by

the least squares estimate

b̂� = (H0�H�)
�1
H
0

��̂: (7)

where the expression forH� is similar to that ofH, except
thatq is replaced by� in H. We assume that� = q is the
largest possible model. Theoptimalmodel is

�0=maxfk : 0 � k � q; bk 6= 0g:

Let w�t , t = 0;�1;�2; : : : be i.i.d. from the distribution
putting massn�1 to r̂t � 1=n

Pn�1
t=0 r̂t, wherer̂t = �̂t �Pq

k=0 b̂kt
k is thet:th residual under the largest model� =

q. The bootstrap analoĝb��;m of b̂� is defined in (7) withn

replaced bym and�̂ replaced bŷ��, whose elements are
given by

�̂�t =

�X
k=0

b̂kt
k + ŵ�t ; t = 0; : : : ;m� 1 : (8)

The model selected by the bootstrap is the minimizer of

��n;m(�) = E�
n�1X
t=0

�
�̂t �

P�
k=0 b̂

�

k;mt
k
�2

n
(9)

over� = 0; : : : ; q, whereE� denotes expectation with re-
spect to the bootstrap sampling [7]. This procedure is con-
sistent in the sense that

lim
n!1

Pf�̂ = �0g = 1;

providedm satisfiesm=n!0 andm!1. For practical
uses,m needs to be specified for a fixedn. One should
choosem so that the least squares fitting of model (6) does
not have too high variability [7]. One possible choice of
m could bem = n , 0 <  < 1. For more details
on the choice ofm the reader is referred to [7]. Compu-
tation of ��n;m(�) in (9) can be performed through Monte
Carlo approximation. GivenB bootstrap resampleŝ��t for
t = 0; : : : ; n� 1, ��n;m(�) can be approximated by

��(B)
n;m(�) =

1

B

BX
b=1

k �̂�H�b̂
�b
�;m k2

n
(10)



for all � 2 f0; : : : ; qg. A detailed procedure for the model
selection is given in Table 1. Notice that the method of re-
sampling used in Table 1 is based on the i.i.d. assumption
of the noise sequence. In the case where this assumption
does not hold, we could use the method ofsubsampling,
suggested in [6], which works for a colored noise sequence
under minimal assumptions.

The bootstrap data generated for computing (10) can be
used in inference, for example, for setting confidence inter-
vals forb after model selection. A method for setting con-
fidence intervals for the parameters of a constant amplitude,
polynomial phase signal under the assumption of a known
model order has been introduced in [10].

3. SIMULATION RESULTS.

The procedure described in Table 1 was tested extensively
on polynomial phase signals whose amplitude is constant.
We report here results obtained for a signal that has a cubic
(q = 3) phase, and a constant amplitude, in the presence of
Gaussian and double exponential noise. We consider data
lengths ofn = 64 andn = 32 and a varying SNR within
the range 5-15 dB. For each SNR,B = 100 bootstrap re-
samples of the signal were produced and the procedure was
repeated 100 times to find the probability of correct phase
order selection. When estimating the residuals,q was set to
6 andm was chosen to be48 and24 for n = 64 and32,
respectively.

The results are shown in Tables 2 and 3 for Gaussian and
double exponential noise, respectively, whenn = 64. They
indicate that the empirical probability of correctly selecting
the phase order is high at a reasonable SNR. As expected,
the noise distribution does not seem to have much influence
on the performance. Forn = 32, Table 4 shows that the
results are satisfactory for an SNR of 15 and 10 dB. The
results for 5 dB SNR are not as good as in the case when
n = 64, which is not surprising for such a small amount of
data.

It was not expected that the method would perform well
at low SNR (0 dB) because it is based on the least squares
estimator of the phase, and a least squares estimator requires
an SNR larger than approximately 5 dB for the approxima-
tion in (4) to be accurate [1, 8]. An alternative bootstrap
model selection approach in the case of a low SNR is dis-
cussed in section 4.

The choice of the largest possible model had little ef-
fect on the results as long as this number is larger than the
true model order. Also, similar results were obtained for
other values form, smaller thann. The results obtained
so far confirm that bootstrap techniques can be employed
to model selection of signals, having a constant amplitude
and a polynomial phase, when the distribution of the noise
sequence is unknown and the sample size is small. An ex-
tension of our approach to the case where approximation (4)
is inaccurate, or to signals whose amplitude and phase can
be modeled by polynomials is discussed next.

Table 1:Bootstrap based procedure for estimating the
order of a polynomial phase signal.

Step 1. Select the largest possible model� = q, and find
the least squares estimateb̂ of b = (b0; : : : ; bq)

0.

Step 2. Compute the residuals

r̂t = �̂t �

qX
k=0

b̂kt
k ; t = 0; : : : ; n� 1:

Step 3. Center the residuals, to obtain

~rt = r̂t �
1

n

n�1X
t=0

r̂t ; t = 0; : : : ; n� 1 :

Step 4. For all0 � � � q,

(a) draw independent bootstrap residuals~r�t ,
with replacement, from the empirical distri-
bution of~rt, t = 0; : : : ; n� 1.

(b) Compute

�̂�t =

�X
k=0

b̂kt
k + ~r�t ; t = 0; : : : ;m� 1 ;

wherem is such thatm=n! 0 andm!1.

(c) Find the least squares estimateb̂��;m from (b).

(d) Compute

�̂�n;m(�) =
1

n

n�1X
t=0

 
�̂t �

�X
k=0

b̂�k;mt
k

!2

:

(e) Repeat steps (a)–(d) a large number of times
(e.g. 100), to obtain a total ofB bootstrap
statistics

�̂�(1)n;m(�); : : : ; �̂�(B)
n;m (�)

and

��n;m(�) =
1

B

BX
b=1

�̂�(b)n;m(�) :

Step 5. Choose� for which ��n;m(�) is minimum with
respect to�.



Table 2:Estimates of the probability (in percent) of se-
lection of order for a cubic phase signal (q = 3) in
Gaussian noise, when n = 64.

SNR [dB] /� 0 1 2 3 4 5 6
15 0 0 0 100 0 0 0
10 0 0 0 100 0 0 0
5 0 3 0 97 0 0 0
0 0 76 18 6 0 0 0

Table 3:Estimates of the probability (in percent) of se-
lection of order for a cubic phase signal (q = 3) in dou-
ble exponential noise, when n = 64.

SNR [dB] /� 0 1 2 3 4 5 6
15 0 0 0 100 0 0 0
10 0 0 0 100 0 0 0
5 0 8 0 92 0 0 0
0 0 61 11 28 0 0 0

4. EXTENSIONS OF THE BOOTSTRAP MODEL
SELECTION

In the case where the SNR is not sufficiently high and thus,
approximation (4) is not valid, we will alter the procedure
given in Table 1 in the following manner. Using an appro-
priate estimation technique for the phase and amplitude pa-
rameters, which leads to consistent estimators, we first esti-
matea0; b0; : : : ; bq, using the largest possible order� = q,
to yield â0; b̂0; : : : ; b̂q. With these estimates, we compute
ẑt;q = â0 expfj

Pq
k=0 bkt

kg, and the residualŝ"t = xt �
ẑt;q, t = 0; : : : ; n� 1. These are centered, to obtain~"t. For
all 0 � � � q, we then draw resamples~"�t , with replace-
ment, from~"t, computex�t = ẑt;� + ~"�t , t = 0; : : : ;m� 1,
and estimatêa�0;m; b̂

�

0;m; : : : ; b̂
�

�;m, which lead tôz�t;�. The
optimal order is then the minimizer over� = 0; : : : ; q of

��n;m(�) = E�
n�1X
t=0

�
xt � ẑ�t;�

�2
n

:

We will proceed similarly if the amplitude can be mod-
eled by a polynomial of finite order. Then, the search for a
minimum will be with respect to, say,� and�, which rep-
resent the variations of the amplitude and the phase order,
respectively. However, for the method to be successful, one
would require consistent estimators for the amplitude and
phase parametersa0; : : : ; a� andb0; : : : ; b�.

5. CONCLUSIONS

A method based on the bootstrap has been proposed for es-
timating the optimal order of the phase of a constant ampli-
tude, polynomial phase signal. Unlike existing techniques,

Table 4:Estimates of the probability (in percent) of se-
lection of order for a cubic phase signal (q = 3) in dou-
ble exponential noise, when n = 32.

SNR [dB] /� 0 1 2 3 4 5 6
15 0 0 0 100 0 0 0
10 0 3 0 97 0 0 0
5 0 44 10 46 0 0 0
0 1 80 14 5 0 0 0

the proposed method does not require the distribution of the
interfering noise to be known. The results show that the
bootstrap is able to estimate the true order with high prob-
ability for small sample sizes at moderate signal-to-noise
power ratio. The introduced method was developed based
on a least squares estimator of the phase which requires the
phase to be unwrapped. This is no limitation and can be eas-
ily extended to other estimators. We also suggested an ex-
tension of the methodology to non-stationary signals which
have polynomial amplitude and polynomial phase.
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