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Abstract

A recursive algorithm for updating linear detectors in code-
division multiple-access systems is proposed. Based on this
algorithm, a window-based implementation with a signal-
based criterion for determining the window length is devel-
oped. Performance analysis and numerical experiments are
conducted that show the merits of the proposed implemen-
tation method.

1. Introduction

The prohibitive computational complexity of the optimum
multiuser detector [1] has motivated the search for subopti-
mal multiuser detectors with much reduced computational
complexity. An important family of suboptimum multiuser
detectors, namely, linear multiuser detectors, has been pro-
posed and extensively analyzed in [2]-[4]. In [5] linear de-
tectors have been shown to have a number of advantages.
However, linear detectors such as the decorrelating detec-
tor or the minimum mean-squared error (MMSE) detector
involve the tasks of computing and updating the inverse of
the correlation matrix or its modi�ed version [4,5], which re-
quire a considerable amount of computation. Furthermore,
the dimension of the correlation matrix in asynchronous sys-
tems is, in principle, the same as the message length, which
is usually very large. This implies not only a high compu-
tational burden but also an unacceptably large delay, if a
direct implementation is adopted.

In this paper, we describe a recursive algorithm for up-
dating the inverse of the correlation matrix. A convergence
analysis is conducted to show that in practice the recur-
sion can be done very quickly. Based on this analysis, a
window-based implementation is proposed. Unlike the con-
ventional window approach proposed in [7], where the win-
dow length is selected empirically, the proposed method uses
a signal-based criterion to select the window length in order
to achieve a given system performance. The proposed im-
plementation has a computational complexity which grows
linearly with the number of users. A performance analysis is
presented, showing that the performance of the proposed im-
plementation can be arbitrarily close to the performance of
the decorrelating detector. Two numerical examples are in-
cluded to demonstrate the convergence rate of the Cholesky-
decomposition recursion and the system performance.

2. Linear Multiuser Detectors

We consider binary-phase-shift-keying (BPSK) transmission
through an additive white Gaussian noise (AWGN) channel
shared by K asynchronous users in a direct-sequence code-
division multiple access (DS-CDMA) system. Let the mes-
sage length be N and denote the kth information bit of the

ith user and its amplitude by bi(k) and
p
ei(k), respectively.

The concatenation of N successive output vectors of the K
matched �lters, r, can be modeled as

r = RNEb+ n (1)

where

r = [rT (1) � � � rT (N)]T r(k) = [r1(k) � � � rK(k)]T
b = [bT (1) � � � bT (N)]T b(k) = [b1(k) � � � bK(k)]T

E = diagfE(1) � � �E(N)g E(k) = diagf
p
e1(k) � � �

p
eK(k)g

n is an AWGN signal with zero-mean and variance �2RN ,
and

RN =

2
66664

Ra(0)Ra(1)T 0 : : : : : : 0
Ra(1) Ra(0) Ra(1)T 0 : : : 0

...
...

...
...

...
...

0 0 0 Ra(1)Ra(0)Ra(1)T

0 0 0 0 Ra(1) Ra(0)

3
77775 (2)

is an (N�N)-block 3-band matrix. EachRa(m) form = 0; 1
in (2) is a K �K matrix whose (k; l)th entry is given by

Rkl(m) =

Z 1

�1

gk(t � �k)gl(t+mT � �l)dt for m = 0; 1

where gk(t) and �k denote the normalized signature signal
and the transmission delay for the kth user, respectively. For
convenience of analysis, the transmission delays are arranged
in ascending order, i.e., 0 = �1 � � � � � �K < T , so as to
obtain an Ra(1) which is an upper triangular matrix with
zero diagonal entires.

A linear multiuser detector can be viewed as a linear
mapping, T, as applied to the outputs of the matched-�lter
bank. The linear mappings for the decorrelating detector
and the MMSE detector are

TL = R
�1
N (3)

and
TM = (RN + �2E�2)�1 (4)



respectively. As the linear mappings in (3) and (4) have the
same structure, we shall focus our discussion on the decor-
relating detector. With minor modi�cations, the results ob-
tained are directly applicable to the MMSE detector.

3. A Window-Based Implementation
Method

One approach to reducing the computational complexity is
to minimize the need for recomputation. In [6], an algo-
rithm for updating linear detectors was proposed for this
purpose. However, only the synchronous case was consid-
ered. Another commonly used method is to detect the user
information bits window by window, where in each process-
ing window the corresponding linear mapping is a matrix of
order MK with M � N [4,7]. In what follows, we show
that much improved implementations can be achieved by
adopting a signal-based criterion that determines the min-
imum number of transmission intervals in each processing
window.

Since RN is positive de�nite with a probability 1 [3],
there exists a decomposition

RN = LL
T (5)

where L is a lower triangular matrix. From (2) and (5), it
can be veri�ed that L has the form

L =

2
66664

C1

D1 C2

D2 C3

0

0 . . .
.. .

DN�1 CN

3
77775 (6)

where Ci is a K �K lower triangular matrix, and Di is a
K �K upper triangular matrix with zero diagonal entries.
It can be veri�ed that L�1 is a lower triangular matrix with
the (i; j)th (i � j) block Lij 2 RK�K given by

Lij = (�1)j�iC�1i
i�jY
k=1

Mi�k for i � j (7)

From (6), the following recursion can be deduced:

C1C
T
1 = Ra(0) (8a)

CiD
T
i = Ra(1)

T 1 � i � N � 1 (8b)

Ci+1C
T
i+1 = Ra(0)�DiD

T
i 1 � i � N � 1 (8c)

If we de�ne Ki = CiC
T
i , then (8) implies that

Ki+1 = Ra(0)�DiD
T
i (9a)

= Ra(0)�Ra(1)K
�1
i Ra(1)

T 1 � i � N � 1(9b)

where K1 = Ra(0) and Ki is positive de�nite. It was shown
in [3] that the decorrelating detector approaches a K-input
K-output linear time-invariant �lter when N ! 1. This
implies that the limit K = lim

i!1
Ki exists. Furthermore, K

is positive de�nite if lim
N!1

RN is positive de�nite, which is

usually the case [3]. The convergence rate of fKig can be

used to understand the behavior of the decorrelating detec-
tor. From (9b), it follows that

Ki+1 �Ki = Ra(1)K
�1
i (Ki �Ki�1)K

�1
i�1Ra(1)

T (10)

By repeating (10) in conjunction with (8), we obtain

Ki+1 �Ki =

p�1Y
j=0

Mi�j � (Ki+1�p �Ki�p) �
i�1Y

n=i�p

Mn (11)

where Mi =DiC
�1
i . It follows that

kKi+1 �Kik
kKi+1�p �Ki�pk � k

p�1Y
j=0

Mi�jk k
i�1Y

n=i�p

Mnk (12)

Now if i � p is su�ciently large such that Ki�p is close to
K, then from (8) Mi�p is close to the limit M = lim

i!1
Mi.

In such a case, we have

k
p�1Y
j=0

Mi�jkk
i�1Y

n=i�p

Mnk � kMpk2 (13)

It can be shown that kMpk � cj�jp, where c � 1 is a con-
stant related to M, and j�j is the largest of the absolute
values of the eigenvalues of M. Consequently, an approx-
imation for the left-hand side of (12) can be obtained as
c2j�j2p. This implies that Ki converges linearly with j�j2
when Ki is close to K. As will be demonstrated in our nu-
merical experiments, in practice, for stable realizations of
the decorrelating detector, j�j < 1 is usually quite small and
hence the convergence rate is high.

We now turn our attention to a window-based imple-
mentation of the decorrelating detector. Assuming that the
window length is M = 2p+1, equation (1) within a window
can be written as

RMEibi = ~ri � re + n (14)

where

bi = [b(i� p)T � � � b(i)T � � � b(i+ p)T ]T

~ri = ri � [(Ra(1)E(i� p� 1)b(i� p� 1))T 0 � � � 0]T

ri = [r(i� p)T � � � r(i)T � � � r(i+ p)T ]T

Ei = diagfE(i� p) � � � E(i) � � � E(i+ p)g
re = [0 � � � 0 b(i+ p+ 1)TE(i+ p+ 1)TRa(1)]

T

and RM 2 RMK�MK has the same structure as RN except
for the size. Hence, the decorrelating detector would esti-
mate bi within the window as

~bi = R
�1
M (~ri � re) (15)

Note that within the window, re in (15) is not available and,
therefore, a modi�ed decorrelating detector is deduced from
(15) by neglecting term re. This leads to

b̂i = R�1M ~ri (16)

Denoting by [y]1:k the �rst k elements of vector y, then

[ ~bi]1:kK contains the estimates of the user information bits



within the �rst k transmission intervals in ~bi. By choosing
an appropriate window length M , the di�erence between
[b̂i]1:(p+1)K and [ ~bi]1:(p+1)K can be made smaller than a
given tolerance. To demonstrate this, we write the di�erence
between [b̂i]1:(p+1)K and [ ~bi]1:(p+1)K as

[R�1M re]1:(p+1)K = [xTLM1 xTLM2 � � � xTLM;p+1]
T

where x = C�1M Ra(1)
TE(i+ p + 1)b(i+ p+ 1). If kLTMixk

for i � p+1 is su�ciently small, the solutions b̂(i�p); b̂(i�
p+ 1); � � � ; b̂(i) obtained from (16) will be su�ciently close
to the corresponding solutions from (15). From (7), we have

kLM;p+1k � kC�1M k k
M�p�1Y
k=1

MM�kk (17)

Based on (17), it can be shown that the window length can
be determined by inspecting the value of kLM;p+1k.

In summary, the window length can be selected as the
smallest M = 2p + 1 such that kLM;p+1k is smaller than a
given tolerance �. Once the window length is determined,
(16) is used to detect the user information bits window by
window. In each window, the user information bits within
the �rst p + 1 transmission intervals are detected, and the
processing window is then shifted by p+ 1 transmission in-
tervals. In the light of the above analysis, an algorithm for
updating a window-based decorrelating detector can be ob-
tained as follows:
Algorithm 1

Step 1 Initialize K1 = Ra(0), i = 1; set a tolerance � and
the largest block length M = 2p+ 1.

Step 2 Perform the Cholesky decomposition Ki = CiC
T
i .

Step 3 Solve CiD
T
i = Ra(1)

T for Di.

Step 4 If i 6= 3, go to Step 5; otherwise,

(a) compute M3 = D3C
�1
3 and estimate j�̂j, the

largest of the absolute values of the eigenvalues
of M3;

(b) determine the block length as p = min(p; p1)
with p1 = max(3; Int[1+logj�̂j �=c]), where Int[x]
denotes the integer part of x.

Step 5 If Int(i=2) > p, stop; otherwise, set i = i + 1,
compute Ki using (9a), and go to Step 2.

Two remarks on Algorithm 1 are now in order. (a) The win-
dow length is determined in Step 4 by using the largest of
the absolute values of the eigenvalues of M3, j�̂j, instead of
j�j. This is because as indicated by our numerical experi-

ments, M3 is usually su�ciently close to M. To estimate �̂,
various numerical methods are available, such as the power
method [8]. Constant c can be simply estimated by the
largest 1-norm of the rows or columns of M3. (b) By fully
exploiting the special structure of Ci and Di, the updating
can be accomplished by using O[M(K � 1)3=2] ops.

Once the linear detector has been updated, the process
of user detection can be e�ciently carried out by using the
following algorithm:
Algorithm 2

Solve C1y(i� p) = ~r(i� p) for y(i� p)

for j = i� p+ 1 : i+ p

Solve Cjy(j) = ~rr(j)�Dj�1y(j � 1) for y(j)
end
Solve CT

i+pb̂(i+ p) = y(i+ p) for b̂(i+ p)

for j = i+ p� 1 : �1 : i� p

Solve CT
j b̂(j) = y(j)�DT

j+1y(j + 1) for b̂(j)

end

It follows that the algorithm requires O[(6p+1)K2] ops
for processing one window. Since in each window only p+1
bits for each user are detected, in total about 6K ops per
user bit are required, which is linear with respect to the
number of users.

4. Performance Analysis
Since the most inaccurate estimate of the user bits usually
occurs at the central transmission interval of a processing
window, the bit-error probability (BEP) of the detector is
less than or equal to the BEP of the user bits at the central
transmission interval. Denote the BEP of the ith bit of
the kth user by Pk(i) and assume that i is the index for
the central transmission interval of a processing window. If
transmitting +1 or �1 is equally likely, then (16) implies
that

Pk(i) = Pf[R�1M ~ri]pK+k < 0 j bk(i) = 1g (18)

where [y]k represents the kth entry of vector y. Assuming
that kLM;p+1k2 < �, it can then be veri�ed that

Pk(i) < Q(

p
ek(i)�K�

p
emax

�
p
dpK+k

) (19)

where Q(x) =

Z 1

x

(1=
p
2�)e�v

2=2dv, dpK+k is the (pK +

k; pK + k)th entry of R�1M , and
p
emax is the largest amongp

e1(i+ p+ 1),
p
e2(i+ p+ 1), � � �,

p
eK(i+ p+ 1).

Recalling the notation of the asymptotic e�ciency de-
�ned in [1], a lower bound of the asymptotic e�ciency of
the ith bit of the kth user can be deduced as

�k(i) >
(1 �K�

p
emax=ek(i))

2

dpK+k
(20)

From (20), we see that if � in Algorithm 1 is selected such

that K�
p
emax=ek(i) � 1, the asymptotic e�ciency of the

proposed detector is close to 1=dpK+k, which coincides with
the theoretical asymptotic e�ciency of the decorrelating de-
tector [2]. This observation serves as a guide to the selection
of the tolerance in Algorithm 1. We can also see that the
near-far resistance [2] of the proposed detector can always
be made nearly optimal if emax=ek(i) is �nite.

5. Numerical Examples
As a �rst example, we consider a two-user system. As will
be demonstrated, the simplicity of the system allows us to
carry out an analysis on issues such as convergence rate of
Ki, implementation of Algorithm 1, and system performance
in an explicit manner. Assuming that R12(0) = �1 and
R12(1) = �2, we have j�1j + j�2j � 1. By (8), a recursion
for the largest of the absolute values of the eigenvalues of
C�1i Di, denoted by j�ij can be found as

j�ij =
���� �1�2
xi(1� �21=xi)

���� (21)



where xi+1 = 1� �2
2

1��2
1
=xi

and x1 = 1. This leads to

x = lim
i!1

xi =
1 + �21 � �22 +

p
(1 + �21 � �22)

2 � 4�21
2

(22)

Letting i ! 1 in (21) and substituting (22) into (21) give
j�j = lim

i!1
j�ij. It can be readily veri�ed that j�j = 1 when

j�1j+ j�2j = 1, which corresponds to an unstable realization
of the decorrelating detector. Fig. 1 depicts j�j versus �1 and
�2. It can be seen that j�j is usually quite small. Speci�cally,
j�j < 0:4 if j�1j+ j�2j < 0:9 whereas j�j < 0:25 if j�1j+ j�2j <
0:8. To illustrate the convergence rate of j�ij, the smallest

value i such that
��� j�i j�j�jj�j

��� < 0:01 is shown in Table 1. Also

shown in the table is the smallest window length required
to ensure that kLM;p+1k < 0:01. As can be seen from Table
1, even in cases where the cross-correlation properties are
poor, the convergence rate of j�ij is still fast and the window
length required is moderate.
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Figure 1: j�j in a two-user system.

Table 1: Convergence rate of j�ij/(smallest window length)
in a two-user system.

�1n�2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1 2/5 2/5 2/5 2/5 2/5 2/5 3/5 3/7
0.2 2/5 2/5 2/5 2/7 2/7 3/7 3/11
0.3 2/5 2/5 2/7 2/7 3/7 3/11
0.4 2/5 2/7 2/7 3/9 3/11
0.5 2/5 2/7 2/9 3/11
0.6 2/5 2/7 3/11
0.7 2/7 3/11
0.8 2/9

As a second example, we consider a 10-user system.
A rectangular chip waveform is assumed in all the simu-
lations. The transmission delays are uniformly generated in
one transmission interval. To examine the robustness of the
detector in an environment with poor cross-correlation prop-
erties, a set of 31-chip sequences was randomly generated
as spreading sequences. Extensive simulations have shown
that even for a 10-dB received power imbalance emax=e1,
7 or 9 transmission intervals for each window are su�cient
to guarantee an asymptotic e�ciency of above 80 percent
of the theoretical asymptotic e�ciency of the decorrelating
detector. If a family of 31-chip Gold code is used as spread-
ing sequences and a 10-dB received power imbalance is still

assumed, the upper bound of the BEP of the proposed im-
plementation with di�erent window length is as illustrated
in Fig. 2. As can be observed, a system with M = 9 exhibits
a performance very close to the theoretical performance of
the decorrelating detector.
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Figure 2: Bit-error probability of user 1.

6. Conclusion
By exploiting the block 3-band structure of the correlation
matrix, a recursive Cholesky-decomposition-based updating
algorithm has been developed. Furthermore, a window-
based implementation for the decorrelating detector, which
includes a signal-based criterion for determining the window
length, has been proposed. The performance analysis and
the numerical experiments carried out show that the pro-
posed implementation method achieves a performance which
is very close to the theoretical one.
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