
MAXIMUM LIKELIHOOD PROPAGATION-DELAY ESTIMATION
IN UNKNOWN CORRELATED NOISE USING ANTENNA ARRAYS:
APPLICATION TO GLOBAL NAVIGATION SATELLITE SYSTEMS 1

G. Seco Granados, J. A. Fernández Rubio

Signal Theory and Communications Department, Universitat Politècnica de Catalunya (UPC)
Campus Nord UPC. Módulo D-5. Jordi Girona,1-3. 08034 Barcelona, SPAIN

e-mail: {gonzalo or juan}@gps.tsc.upc.es

                                                          
1 This work has been partially supported by a grant of the Generalitat de Catalunya and by the National Research Plan of Spain CICYT
under grant TIC96-0500-C10-01

ABSTRACT
The problem of estimating the propagation-delay of a desired
signal in the presence of interferences and multipath propagation
is addressed. This paper presents the maximum likelihood (ML)
propagation-delay estimator for a signal arriving at a sensor
array. The novel characteristic herein is that the desired signal
impinges on the array with a known steering vector. This fact
allows to assume an unknown and arbitrary spatially colored
noise.. The Cramér-Rao bound (CRB) for the problem at hand is
derived and numerically compared with the variance of the MLE.
The MLE is applied to the Global Navigation Satellite Systems,
in order to reduce the serious performance deterioration that the
interferences and the multipath propagation produce. We show
that in presence of coherent reflections of the desired signal the
presented estimator is no longer the MLE and becomes biased.
However, its bias is much lower than that of other conventional
estimators.

1. INTRODUCTION

Propagation-delay estimation is a key task in diverse applications
such  radar, sonar and communications. In the Direct-Sequence
Spread Spectrum (DS-SS) communication systems the
synchronization between the received pseudo-noise (PN) code
and the local code has to be as accurate as possible in order to
not increase the bit error probability. Other systems that arouse
great interest at present and wherein the propagation delay
estimation is fundamental, even more than in the communication
systems, are the Global Navigation Satellite Systems (GNSS).

Nowadays there is no doubt that GNSS will complement and
even replace in a near future all the other positioning and
synchronization systems. At the present time there are two global
satellite positioning systems: GPS and GLONASS. They are
based on the measurement of the distance between the receiver
and a set of satellites[1]. These distances are directly obtained
from the signal propagation delay between each satellite and the
receiver, so it is clear that in a GNSS receiver the only signal-of-
interest (SOI) is the direct signal or line-of-sight signal (LOSS).
Another peculiarity of the GNSS is that the receiver is able to
know the direction of arrival (DOA) of the direct signal. This is
because the receiver can know its position and the satellite one

with a certain degree of error that does not affect the
computation of the angle with which the satellite is observed.

GPS and GLONASS transmit direct sequence-spread spectrum
(DS-SS) signals. The distance measurement that the receiver
obtains from the propagation delay of the PN code is called
pseudorange. The distance can be measured using the carrier
phase as well. The carrier phases are more accurate than the
pseudoranges. However, in the carrier phase receivers it is also
necessary to measure accurate pseudoranges, because the more
accurate the pseudoranges, the more efficient the methods to fix
the integer ambiguity [2].

The measured distances are affected by the errors produced by
several phenomena. Probably the most harmful phenomena are
the multipath propagation and the interferences, because their
effects can not be mitigated by differential techniques [1].

The most widely used technique to measure the pseudorange is
the Delay Locked Loop (DLL) [3]. As the performance of the
DLL degrades in presence of multipath propagation, other
techniques mono-sensor have been proposed, such the Narrow-
Spacing DLL [3] and the Multipath Estimating DLL [4]. Neither
of these techniques can combat the interferences.

Some techniques to measure the pseudorange using antenna
arrays have already been investigated and it is clear that the
multi-sensor techniques are the most effective ones to reduce the
errors introduced by the interferences and the multipath
propagation. An overview of these techniques can be found in
[5] together with an iterative method for the propagation-delay
estimation and array beamforming that does not need a previous
DOA estimation stage.

The purpose of these paper is to present the maximum likelihood
(ML) propagation delay estimator for a signal received by an
array of sensors. The knowledge of the desired signal DOA
allows to assume an unknown correlated noise, which models the
thermal noise and all other interferences and jamming. We shall
apply the MLE to the GNSS and show that the MLE with
antenna arrays is effective to reduce the variance and the bias of
the propagation delay estimates in scenarios with interferences
and multipath.



2. ML PROPAGATION-DELAY
ESTIMATION

2.1 Problem formulation

Consider an array of N sensors arranged in an arbitrary geometry
and having arbitrary responses. The received complex N-vector
is modeled as

x a n( ) ( ) ( )t s t to o o= − +α τ (1)

where n(t) is the additive noise, s(t) is an arbitrary and known
narrow-band signal-of-interest, ao is the known steering vector
for the SOI, and D
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propagation delay associated with the SOI. Let t1, . . . , tK denote
the K time instants at which the snapshots are taken. The
sampled data can then be expressed as
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The noise vector is assumed to be a zero-mean complex
Gaussian vector with unknown covariance matrix Q, temporally
white and independent of the SOI.
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(4)

where (�)H denotes complex conjugate transpose. The matrix Q
models both thermal noise and all other interferences and
jamming, assuming that they are independent of the desired
signal. In an actual scenario the noise and interferences may not
be temporally white. Nevertheless, it is shown in section 3 that
there is a very slight performance degradation in this case.

Given the model described above, the problem addressed in this
paper may be stated as follows: Given a collection of data X as
defined in (2), the vector ao and the signal s(t), estimate the delay
W
R
� and the amplitude D

R
and the matrix Q.

2.2 The MLE for signal with known direction
of arrival in unknown correlated noise

The log-likelihood function of the data takes the form

( )
( )( ) ( )( ){ }

L KN K

tr

o o

o o
T

o o o
T

o

H

X Q Q

Q X a s X a s

; , , ln lnτ α π

α τ α τ

= − − −

− − −−1

(5)

It can be shown that (5) is maximized (for fixed D
R
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) by
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If we define the sample correlations as
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and substituting (6) into (5) and ignoring parameter independent
terms yields the concentrated log-likelihood function
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Applying the determinant identity _I+BHC_= _I+CBH_ to (9) and
taking into account that (8) does not depends on D

R
� it is easy to

show that
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Substituting this value back in (9), developing (8) according with
the previous determinant identity and applying the matrix
inversion lemma to (8), we get
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which can be further simplified if the amplitude estimate (10) is
expressed in function of �R xx

instead of �R nn
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We finally get the maximum likelihood propagation-delay
estimator as
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It can be proved ([6]) that this MLE is consistent and
asymptotically statistically efficient. Important characteristics of
this estimator are that it can be applied with any array geometry
and that it avoids spectral searches, thus overcoming the main
drawbacks of the DOA estimation based methods and the
decorrelation methods [5].

2.3 Cramér-Rao Bound

The Cramér-Rao bound (CRB) is a lower bound on the variance
of any non-biased estimator. The variance of the presented MLE
tends asymptotically (when the number of samples K tends
towards infinity) towards the CRB. Considering the log-
likelihood function of (5), the ij th entry of the Fisher information
matrix has the form [6]
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where (�)i
’ stands for the derivative with respect to the ith real

unknown of the log-likelihood function. The FIM is block
diagonal since  Q does not depend on D

R
� W

R
or vice versa. If we

only consider the delay, the modulus and phase of the amplitude
the corresponding block of the FIM is
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and

CRB FIMb b= −1 (16)
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3. SIMULATION RESULTS
This section examines the performance of the MLE. Although
the formulation has been absolutely general, we are going to
apply it to the problem of estimating the delay of the line-of-
sight signal received from a GPS satellite. Each GPS satellite
transmits several DS-SS signals, but civil users have only access
to the carrier spread by the C/A code, with a chip rate equal to
1.023 Mchips/s. This carrier is called L1 and it is also modulated
by the 50 bits/s navigation message. The received signal power is
well below the noise power, but passing the output of each
antenna through a matched filter to the C/A code yields a
“finger” for each multipath arrival every bit period. Each finger
is the autocorrelation of the C/A code, with a duration roughly
equal to 2 chips. These “fingers” are above the noise level thanks
to the 43dB processing gain, however they can be below the
interferences. As the use of an antenna array in the receiver
should be useful to combat the interferences and the multipath,
but not necessarily the noise which is enough attenuated in the
despreading process, it is necessary to apply the MLE at the
output of each antenna matched filter. Therefore, the signal s(t-
Wo) in (1) represents in our case the “fingers” corresponding to
the line-of-sight signal.

In the simulations below we are going to consider two
performance measures: the variance and the bias of the estimator.
In all the cases the array is assumed to be linear with uniform
half-wavelength spacing and the signal power to noise spectral
density ratio is 40dB-Hz, which yields a SNR equal to 23dB
after the despreading. The line-of-sight signal DOA is 30º and
the noise is spatially white. The RMS (root mean square) delay
estimation errors presented below are obtained from 200 Monte
Carlo simulations.

3.1 Delay estimation variance

In the first experiment, we investigate the variance of the MLE
as the number of samples K is varied. The results are plotted in
Figure 1 for the samples being taken in 1 and 2 fingers. Rough
previous synchronization with an error up to a tenth of a chip is

assumed. The first thing that stands out from this figure is the
nearly unappreciable improvement when taking the samples in 2
fingers. Also the RMSE does not attain the CRB. For small
numbers of samples the RMSE decreases with the number of
samples, but later it tends to a constant value. The reason for
these behaviors is that the noise (at the output of the matched
filter) is not temporally white as it was considered in section 2.
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Figure 1. N=10 antennas. The direct signal and noise are
received. Solid line is for the CRB with 1 finger and
dashed line for the CRB with 2 fingers. ‘o’ and ‘+’ are
for the RMSE with 1 and 2 fingers, respectively.

In the second experiment (Figure 2), we compare the RMSE
against the CRB when an interference is received in function of
its power. Again the RMSE does not attain the CRB due to the
fact that the interference is not temporally white. However, note
that the RMSE and the CRB tend to a constant value as the
interference power increase. This implies that the receiver can
hold up arbitrarily strong interferences using an antenna array.
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Figure 2. N=10 antennas, K=35 samples in one finger.
In solid line the CRB when the interference arrives from
35º and ‘o’ is the RMSE in this case. The dashed line
and ‘+’ are the CRB and RMSE when the interference
arrives from 40º.

In the third experiment, the effect of the number of antennas on
the CRB and the RMSE is analyzed. The results are illustrated in
Figure 3. As predicted by theory, the CRB and the RMSE are
reduced when the number of antennas increases. Furthermore,



for a small number of antennas the higher the interference, the
more antennas are needed to achieve the same RMSE.

3.2 Delay estimation bias

In presence of coherent multipath the received signal can not be
modeled as in (1), where it was divided in the direct signal term
and in an additional term incorrelated with the former. Therefore
the estimator (13) is no longer the MLE and it suffers from a
certain bias. Figure 4 illustrates the asymptotic maximum bias
produced by an single reflection in the estimator at hand and in a
conventional DLL[3]. The bias depends on the angular
separation between the direct signal and the reflection, however,
in all the cases the bias of the proposed estimator is much lower
than that of the DLL.

In the final example, we investigate the effect of increasing the
number of antennas. As expected, Figure 5 shows how
increasing the number of antennas is effective for reducing the
bias.

4. CONCLUSIONS

We have presented the maximum likelihood propagation-delay
estimator for a desired signal with known DOA arriving at a
sensor array in presence of unknown and arbitrary spatially
colored noise, which has been considered temporally white. This
estimator is applied to measurement of the propagation delay of
the GPS signals. The estimation variance is slightly greater than
the CRB, due to the non-white noise and interferences in the
actual scenario. In presence of coherent multipath propagation
the bias of the investigated estimator is much lower than that of
the conventional methods. Therefore, it has been proved that the
use of antenna arrays together with the ML propagation-delay
estimator allows to greatly reduce the effects of the interferences
and the multipath, which are the most harmful sources of errors
in GNSS.

5. REFERENCES
[1] Wells, David. Guide to GPS positioning. Canadian GPS

Associates, 1986-1987.
[2] Park, C., Kim, I., Gyu Lee, J., Jee G. “Efficient technique to

fix GPS carrier phase integer ambiguity on-the-fly”. IEE
Proceedings in Radar, Sonar and Navigation, 144(3):148-
155, June 1997.

[3] Van Nee, R.D.J. “Spread-Spectrum Code and Carrier
Synchronization Errors caused by Multipath and
Interference”, IEEE Trans. on AES, 29(4): 1359-1365,
October 1993.

[4] Saarnisaari, H. “ML time delay estimation in a multipath
channel”,  ISSSTA’96, pp. 1007-1011, Mainz, Germany.

[5] Seco Granados G., Fernández Rubio J., “Multipath and
Interference Errors Reduction in GNSS by joint
pseudorange measurement and array beamforming”. GNSS’
97, First European Symposium on Global Navigation
Satellite Systems, pp. 606-614, 21-25 April 1997. Munich,
Germany.

[6] Kay, S.M. Fundamentals of Statistical Signal Processing.
Estimation Theory. Prentice-Hall 1993.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Number of antennas

R
M

S 
D

el
ay

 E
st

im
at

io
n 

Er
ro

r (
ch

ip
s)

Figure 3. Interference DOA 35º and K=35 samples in
one finger. Solid line and ‘o’ for the CRB and RMSE
when SIR=20dB(after despreading). Dashed line and ‘+’
for the CRB and RMSE when SIR=0dB after
despreading.
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Figure 4. The reflection is 1.6dB below the direct signal.
The dashdotted line represents the bias of a DLL with
early-late spacing 0.2 chips. The solid and dashed lines
correspond to the MLE using 8 antennas and the
reflection DOA being -40º and 35º, respectively.
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Figure 5. One reflection 1.6dB below the direct signal
and delayed 0.15 chips. The reflection DOA is -40º for
‘o’ and 35º for ‘+’.


