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ABSTRACT

In this paper, we propose a noise filtering scheme, which is
based on a multichannel homomorphic transformation, for
color photographic images corrupted by signal–dependent
film grain noise. The proposed method performs the esti-
mation of the noise parameter using the higher–order statis-
tics (skewness or kurtosis) of the corrupted image and the
filtered image statistics. This parameter estimation tech-
nique can be used to generate color film grain noise that
has applications in motion picture productions. After a the-
oretical description of the method employed, experimental
results are provided.

1. INTRODUCTION

The extraction of information from noisy signal is a com-
mon problem in image processing. Traditional techniques
for processing corrupted images have assumed the noise to
be additive and signal independent. However, film grain
noise, that is present in photographic images, has signal
dependent statistics, therefore a different model has to be
used. Since the formation of an image on a photographic
film is a highly complex optical and chemical process, mod-
eling this process with a high degree of accuracy, if at all
possible, often results in models that are too complex to
be managed. On the other hand, the use of oversimplified
models may lead to very suboptimal algorithms. Different
models have been proposed in [5]. Here we’ll represent the
signal dependence of the noise through a model proposed
in [8], adapted to represent color images:
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where, the symbol� indicates dot product and for nota-
tion simplicity, we have omitted the dependence from the
pixel’s position�P��P��.The subscriptsL  5�*�% rep-
resent the generic channel (5ed,*reen,%lue) of the color
image,VL is thei-th component of the noiseless image,NL is
the i-th component of the scanning constant,S is an expo-
nent that depends on film, usually taking the value���, and

QL is thei-th component of Gaussian noise with zero mean
and unit variance. The eq.(1) assumes negligible measure-
ment noise because in many practical cases the main source
of degradation for photographic images is film grain noise.
The suppression of signal dependent noise, for color im-
age, can be performed by generalizing to the multichannel
case the standard techniques designed for additive noise,
properly modified to take into account the dependence of
noise from the signal. Examples are the Wiener filter [8],
and statistical estimators [8] for the signal model of eq.(1).
However due to the nonlinearity of the model employed,
the statistical estimators (MMSE and MAP) have a com-
plicated form and involve numerical integration at every
pixel. Moreover these techniques assume that the parame-
ter k  >N5 N* N% @

7 is known a priori.
In this paper, a generalization of the approach outlined

in [11], to the multichannel case, is proposed. A multichan-
nel homomorphic transformation is performed on the image
to decouple the signal from the noise so that the noise be-
comes additive signal–independent, and then conventional
additive noise filtering techniques are applied. A new mul-
tichannel adaptive linear filter, that is based on the local–
statistics of the image, is also proposed. It performs better
than the Wiener filter, that employs the global–statistics of
the image.

2. MULTICHANNEL GENERALIZED
HOMOMORPHIC ADAPTIVE FILTERING

Homomorphic processing was initially applied to multi-
plicative noise. Arsenault et al. [2], derived a generalized
transformation for signal dependent noise of arbitrary form.

Consider a noisy imageU, with film grain noise, having
a probability distributionS�U�. Since the noise is signal–
dependent, the standard deviation ofU is a known function
of the mean value�U, and so we can write U  +��U�
where+��� represents the signal–dependence functionality
of  U. The objective is to find a transformation (generalized
homomophic transformation),Z  J�U�, such thatZ will
contain statistically signal–independent noise (i.e. constant
variance noise) over a wide range of image values. It can
be easily shown [1], [10], that the wanted transformation
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Z  J�U�  .
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For any signal-dependent noise, once the relationship be-
tween the variance and the signal has been determined, the
above formula can be used to find a transformation that
will make the noise additive and signal independent. With
the noise model in eq.(1), it can be demonstrated that
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.U���S�

N��� S�
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where . is a constant. For the special case S  ���, the
above expression becomes

Z  J�U�  
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and transforms the signal–dependent noise into additive in-
dependent noise with variance.�. The transformed im-
age model (for.  �) then becomes, [3],Z  J�U� 

J�V��Q  X�Q. Notice that the noise in the transformed
domain is approximately additive Gaussian and signal–
independent.

For color images, the following noise model is assumed
after transformation:

w  J�r�  u� n (5)

that can be explicitely expressed as�
� Z5

Z*

Z%

�
�  

�
� J�U5�

J�U*�
J�U%�

�
�  

�
� X5

X*
X%

�
��

�
� Q5

Q*
Q%

�
� (6)

where the functionJ��� is given by eq.(4).
Given the additive signal–independent noise model of

eq.(6), conventional linear filtering techniques can be ap-
plied. Example of a classical linear filter is the Wiener
filter which takes a ”global” view of the image statistics
and applies the same filter to the entire image. In this way
noise is smoothed but some details are also destroyed.

To overcome this problem it is desirable to use a fil-
ter whose coefficients are adjusted according to the local–
statistics of the image in order to smooth noise and at the
same time preserve the image details. The proposed filter
is the generalization to the multichannel case of the filter
employed in [11], and it assumes the following form:

Au  Kw � D>w � Kw@ (7)

whereD is an adaptive variable constrained to have a value
between 0 and 1, andKw is a filter mask defined as a
weighted window ofM size��1 � ��x��1 � �� centered
on the current pixel�P��P��:
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andN � N is the Euclidean distance defined in the following
fashion:
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Using this approach, the filter coefficients are calculated
using a discriminating function, which tends to 1 for pixels
having ”small” distance, in the sense specified by eq.(9),
from the current pixel, and tends to 0 for the others. The
filter maskKw�L� M� is allowed to vary from pixel to pixel.
The same weighted window is applied to the three channels
�5�*�%�.

The proposed filter can be interpreted as a combination
of a lowpass component given by the termKw and a high-
pass component, expressed as the difference between the
corrupted imagew and its lowpass componentKw, weighted
by a nonstationary variableD.

To determine the adaptive variableD, we minimize the
following criterion:

PLQ (>NAu�P��P��� u�P��P��N�@ (10)

Minimization of eq.(10) yields:

DRSWLPXP  
(>NuN�@ � (>NKwN�@� �(>u � Kw@

(>NuN�@ � (>NnN�@ � (>NKwN�@� �(>u � Kw@

with u � Kw denoting dot product.
The estimation ofDRSWLPXP requires the knowledge of

u that isn’t available. In [10] it is shown that a suboptimal
estimation, that provides a reasonable approximation of the
optimumD, is
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The parameterE in the filter mask controls the width of the
discriminating function, and is left as a design parameter.
Through experimentation a good choice forE is the value
 w. If the variance is high, which corresponds to a large
value of E and indicates a high level of noise, the slope
of the function is small. This results in smoothing the
image details. However, if the variance is low, then more
emphasis is on edge preservation.

3. COLOR FILM GRAIN NOISE REMOVAL

The adaptive noise smoothing filter structure is represented
in fig.(1)

Then, the noise removal procedure can be summarized
by the following:
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Figure 1: Noise filtering scheme

� perform the generalized homomorphic transformation
on the corrupted image r given by eq.(1), in order to
decouple noise form signal,

� filter the transformed image, w, using the proposed
filter,

� the filtered image so obtained, Au, is then homomor-
phically transformed back obtaining an estimation, As,
of the ideal image s.

4. COLOR FILM GRAIN NOISE GENERATION

As outlined in the Introduction, film grain noise generation
has applications in television productions where computer
generated images and video images are combined into one
frame. In this process, film grain noise is added to the
computer generated images to match the grain pattern of
the film, thus obtaining images that appear to be obtained
through the same photographic process. However to add
the right amount of noise, the parameter k must be esti-
mated. Assuming S  ���, the variance, skewness and
kurtosis of each component UL, with L  5�*�%, of the
corrupted image r, are related to that of the correspond-
ing components of the observed image s by the following
equations:
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where FUL� and FUL� , with L  5�*�%, represent the skew-
ness and kurtosis of the i-th component of the observed
image respectively and  �

VL
is the variance of the i-th com-

ponent of the signal. For L  5�*�%, the value of NL,
can then be obtained by substituting the statistics of the
observed image � �

UL
� FUL� � and FUL� � and the a prior image

statistics � �
AVL
� F�AVL � and F�AVL� into any of the above equa-

tions.
Then, given a noisy image, the noise generation proce-

dure, that is depicted in fig.(2), can be summarized by the
following:

� perform, on the given noisy image, the operations
summarized in the previous section to obtain the
”ideal” imageAs,

� estimate the value ofk, using for each componentNL
relations eq.(12),

� generate noise according to eq.(1) and add it to a
noise free image to match the grain pattern of the
noisy image.
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Figure 2: Noise generation scheme

5. SIMULATION RESULTS AND CONCLUSIONS

In order to verify the effectiveness of the proposed methods,
for removal and generation of color film grain noise, two
test images are used: ”Lenna” and ”Melon”.

The original images are corrupted, with film grain noise,
accordingly to eq.(1); the resulting images are then filtered
using the proposed method and another method,[6], for
comparisons.

To select the values ofNL, with L  5�*�%, used
in eq.(1), several issues need to be considered. First, the
choice ofNL, should reflect the relative noise levels in actual
color–sensitive emulsion layers that lead to amount of noise
in the different channels�5�*�%�. Second, we should
also take into account the human visual system so that, the
channel with heavy noise would have the greatest effect on
perceived graininess. With the above considerations, noise
power in the5ed channel should be the least, followed
by the %lue and the*reen channel [7]. In simulations,
two sets of values fork are k�  >���� ���� ����@7 and
k�  >���� ���� ����@

7 . The comparison method employed
is the generalization to the multichannel case of the Lee’s
algorithm [6] that gives

Au  Pw �
 �

w � �
 �

w
�w �Pw� (13)

where, for notation simplicity, we have omitted the pixels
position dependence, andAu and w are the signals repre-
sented in fig.(1). In fact, the following different algorithms
are selected for noise filtering:



� 3 independent runs of Lee’s algorithm for single–
channel filtering (Lee’s S.)

� 1 run of Lee’s algorithm for multichannel filtering
(Lee’s M.)

� 3 independent runs of the proposed Generalized Ho-
momophic Adaptive Filtering algorithm for Single–
channel (G.H.A.F. S.)

� 1 run of the proposed Generalized Homomophic Adap-
tive Filtering algorithm for Multi–channel (G.H.A.F.
M.)

Two well known metrics used in evaluating the distance,
and hence the performance, between the ideal image and
the filtered image are the/� norm and the/� norm, defined
as in [4]

/�  MV5 � AV5M� MV* � AV*M� MV% � AV% M
/�  

S
�V5 � AV5�� � �V* � AV*�� � �V% � AV%��

Results are summarized in Table[1] and Table[2].

k� k�

Metric /� norm /� norm /� norm /� norm

No filtering 1.196e-1 9.443e-2 1.783e-1 1.415e-1
Lee’s S. 7.287e-2 6.142e-2 9.857e-2 8.369e-2
Lee’s M. 7.106e-2 6.001e-2 9.511e-2 8.053e-2
G.H.A.F. S 7.097e-2 5.997e-2 1.028e-1 8.643e-2
G.H.A.F. M 6.623e-2 5.604e-2 8.814e-2 7.337e-2

Table 1: Performance of different filtering schemes with
color ”Lenna”

k� k�

Metric /� norm /� norm /� norm /� norm

No filtering 1.190e-1 9.449e-2 1.773e-1 1.409e-1
Lee’s S. 7.029e-2 5.801e-2 9.351e-2 7.775e-2
Lee’s M. 6.816e-2 5.605e-2 8.984e-2 7.402e-2
G.H.A.F. S 6.459e-2 5.276e-2 9.429e-1 7.793e-2
G.H.A.F. M 6.103e-2 4.989e-2 8.143e-2 6.599e-2

Table 2: Performance of different filtering schemes with
color ”Melon”

It can be observed that for both the moderate (k�)
and the large (k�) noise power, the proposed multichan-
nel scheme has excellent noise suppression properties over
the single channel filtering scheme. This is because infor-
mation between channels is utilized in computing the filter
mask and the adaptive weight. Moreover, the proposed
multichannel scheme outperforms the Lee’s algorithm in
both noise smoothing and edge preservation.

To test the color noise procedure generation, the image
”Lenna” is used. Film grain noise, withk�  >���� ��� ���@

7

andS  ���, is added to the ideal image and the proposed
film grain noise generation procedure is applied. To com-
pare the noise level of the original corrupted and the final
image, multichannel mean square error (MSE) is used. It is
defined as the sum of the three signal–channel MSE’s. The
obtained results using second, third, fourth order statistics
according to eq.(12), are summarized in Table [3].

Multichannel MSE
statistics second order third order fourth order

1.1550e-2 1.1570e-2 9.7017e-3

Table 3: MSE’s of noise–added ”Lenna” image. Mul-
tichannel MSE for the original corrupted color image is
8.92e-3.
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