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ABSTRACT

We present a methodology for adaptive �ltering and
system identi�cation under the cyclostationary regime.
Our technique is based on a deterministic periodic

least-squares criterion, and gives rise to adaptive peri-
odic recursive-least-squares (P-RLS) algorithms. Fur-
thermore, we show that every adaptive RLS algorithm
has a P-RLS counterpart, which has exactly the same
architecture and the same performance attributes, and
di�ers only in the length of the delay used in its time-
update recursions.

1. INTRODUCTION

Adaptive algorithms have been successfully used in
the last few decades in a variety of applications that in-
volve stationary (or close-to stationary) signals, includ-
ing: echo and interference cancellation, system identi-
�cation, channel equalization and beamforming [1, 2].
Such signals are associated, either explicitly or implic-
itly, with linear time-invariant (resp. slowly-varying)
systems. Adaptive algorithms are designed to deter-
mine (resp. track) the coe�cients of such systems.
However, the commonly-used adaptive algorithms can-
not be used to estimate coe�cients of rapidly-varying
systems, which are encountered in numerous applica-
tions, ranging from communications via atmospheric
and underwater fading channels, through marine seis-
mography to study of biological signals. This is so
because conventional adaptive algorithms use narrow-
band averaging which suppresses the time variation
of rapidly-varying coe�cients, and results in highly-
biased estimates.

To be more speci�c, recall that the prototypical
adaptive �ltering problem involves the identi�cation of
the unknown coe�cients wi(n) in the linear multiple-
input/single-output relation [1]

d(n) =
MX
i=1

wi(n)xi(n) + v(n) = W (n)X(n) + v(n)

(1a)

where xi(n) are the inputs, d(n) is the output,

W (n) = [w1(n) w2(n) : : : w
M
(n)] (1b)

X(n) = [x1(n) x2(n) : : : x
M
(n)]T (1c)

and where v(�) is an additive noise that is uncorre-
lated with the signals xi(�). When the coe�cients
wi(�) are time-invariant (i.e., independent of the time
index n) this problem can be solved via the cele-
brated deterministic least squares method: given the
�nite signal records
�
d(n) ; 0 � n � N

	
;

�
xi(n) ; 0 � n � N

	

one forms the cost function

J(N ) =
NX
k=0

�k
�� e(N � k)

��2 ; 0 < � < 1 (2a)

where

e(n) = d(n)�
MX
i=1

bwi xi(n) = d(n)�cW X(n) (2b)

The unique minimum cW of J(N ) serves as an es-
timate of the unknown W = W (n) of (1a). This
estimate, when implemented in a time-recursive fash-
ion, gives rise to the family of adaptive recursive least
squares (RLS) algorithms [1, 2].

However, when the unknown coe�cients wi(�) are
time-variant , the conventional RLS method tends to
produce low-quality estimates. This is true, in partic-
ular, for periodically-variant coe�cients: while some
tracking capability can be retained by lowering the
value of the \exponential forgetting factor" � in (2a),
this results in increased sensitivity to the additive noise
v(�) of (1), as is evident from the example shown in
Fig. 1.

In this paper we extend the deterministic least-
squares method to the periodically-variant case: this
results in time-recursive algorithms that we call peri-
odic recursive-least-squares (P-RLS). The tracking per-
formance of such algorithms under a cyclo-stationary
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Figure 1: Performance comparison of: (i) stan-
dard (exponentially-weighted) RLS, with � =
0:93 (��) ; (ii) Periodic RLS (� � �). The true
w(n) is indicated by ���.

regime is always superior to that of conventional RLS,
as demonstrated by Fig. 1. Our main result is the es-
tablishment of a one-to-one correspondence between P-
RLS and RLS algorithms, so that every adaptive RLS
algorithm has a P-RLS counterpart, which has exactly
the same architecture and di�ers only in using delays
of length P (instead of unit delays) in its so-called
time-update recursions.

In particular, we focus on adaptive fast P-RLS al-
gorithms in lattice form. In Sec. 3 we present in detail
one such algorithm { the adaptive P-RLS lattice algo-
rithm. We show that it di�ers from its standard RLS
counterpart only in the presence of a P -unit delay in
the time-update recursions. The same correspondence
exists between all P-RLS algorithms and their RLS
counterparts. This means that all available analyti-
cal and experimental results concerning performance
attributes of speci�c adaptive RLS algorithms { such
as rate of convergence, steady state error, numerical
robustness and computational cost { also hold for the
P-RLS counterparts of these algorithms.

In Sec. 4 we discuss briey the equivalence between
the P-RLS approach and several existing techniques
for identi�cation of periodically-variant linear systems.
These include the function series approach [3, 4], the
weighted least-squares approach [5, 6], and certain mul-
tichannel embedding approaches [7].

2. PERIODIC LEAST-SQUARES

Our starting point for obtaining P-RLS algorithms

is the periodic least squares criterion

J(N ) =

[N=P ]X
k=0

�kP
�� e(N � kP )

��2 ; 0 < � < 1 (3a)

where [N=P ] denotes the integer part of the fraction
N=P , and where

e(n) = d(n)�cW (n)X(n) ; cW (n+P ) = cW (n) (3b)

In other words, we replace the �xed (time-invariant)
cW of (2) by a periodically-variant cW (n).

The optimal cW (n), i.e., the one that minimizes the
periodic least-squares cost J(N ) of (3), can be shown
to satisfy the time-variant Wiener-Hopf equations [8]

cW (n)RXX(n) = RdX(n) ; 0 � n � N (4a)

where

RXX(n) =
X
l

�lP X(n � lP )X�(n� lP ) (4b)

RdX(n) =
X
l

�lP d(n� lP )X�(n� lP ) (4c)

and where the asterisk (�) denotes a Hermitian trans-
pose (= complex conjugate for scalars). We observe
that by setting P = 1, the periodic least squares for-
mulation (3)-(4) reduces to the standard deterministic
least squares problem [1, 2]. As we show in Sec. 3, the
same holds true for the adaptive P-RLS algorithms we
derive: setting P = 1 reduces them to standard adap-
tive RLS algorithms. The starting point for deriva-
tion of time-recursive implementations of (4) is a time-
recursive equivalent of (4b,c), namely

RXX (n) = �P RXX (n� P ) +X(n)X�(n) (5a)

RdX(n) = �P RdX (n� P ) + d(n)X�(n) (5b)

Again, when P = 1 we recognize (5) as the starting
point for all standard RLS algorithms [1].

The characterization (4),(5) of the optimal coe�-

cient vector estimate cW (n) can also be interpreted
in probabilistic terms. Indeed, the linear relation (1)
implies that the true coe�cient vector W (n) also sat-
is�es a time-variant Wiener-Hopf equation, viz.,

E
�
d(n)X�(n)

	
= W (n) E

�
X(n)X�(n)

	
because the additive noise v(n) is uncorrelated with
X(n). If d(n) and X(n) are jointly-cyclostationary
with a known period P , then the required proba-
bilistic moments can be e�ciently estimated by apply-
ing an (optimized) averaging �lter with transfer func-
tion HP (z) = (1 � �P )[1 � (�z�1)P ]�1 to the com-
posite signals d(n)X�(n), and X(n)X�(n), re-
spectively [9]. Thus, we recognize RXX(n) and



RdX(n) of (4),(5) as (improperly scaled) periodically-
averaged estimates of the periodic second-order mo-
ments E

�
X(n)X�(n)

	
and E

�
d(n)X�(n)

	
, ob-

tained by using the improperly scaled averaging �lter
[1��P ]�1HP (z) = [1�(�z�1)P ]�1. The reason for the
use of improper scaling is that while it does not a�ect
the estimate cW (n) of (4a), it reduces the computa-
tional cost of the resulting adaptive RLS algorithms,
as compared with algorithms based on the appropri-
ately scaled versions. This fact is well-known for the
(standard) case P = 1 [1].

3. FAST P-RLS ALGORITHMS

As with standard RLS, one obtains fast algorithms
(i.e., with O(M ) computations per time instant in-
stead of O(M2) computations) by exploiting the so-
called \shift property" xi(n) = x(n � i + 1), which
holds in many adaptive �ltering applications [1]. In
this case, the recursive matrix relation (4b) admits a
simple geometric interpretation, as described in [10].
Thus, introduce the data (row) vectors

d(n) = [d(n) d(n� P ) d(n� 2P ) : : :] (6a)

x(n) = [x(n) x(n� P ) x(n� 2P ) : : :] (6b)

of some �xed length L (long enough to include all
available past data), and de�ne the inner product for
any two (row) vectors a, b of length L, as follows,

hh a; b ii = a� b� ; � = diagf1; �P ; : : : ; �P (L�1)g (6c)

We now observe that (5a) reduces to

hhx(n);x(k) ii = �P hhx(n � P );x(k � P ) ii + x(n)x�(k)
(7)

and a similar interpretation holds for (5b). In the lan-
guage of [10] this means that the data vector

x(n)� = [0 x(n� P ) x(n� 2P ) : : : ]

is isometric (or congruent) to the delayed and scaled

data vector
p
�P x(n � P ), where the so-called \pin-

ning vector" � = [1 0 : : : ] is the same as the
one used in [10] for standard RLS. Using the technique
of [10] in conjunction with the geometric interpreta-
tion (6),(7), we can derive a variety of adaptive fast
RLS algorithms, both in lattice and transversal form
(see also [11]). In the process we observe that the only
di�erence between the geometric set-up of the P-RLS
problem and that of the standard RLS is the presence
of a P -unit delay in the fundamental time-update re-
lation (7): setting P = 1 in (7) produces, for instance,
eq. (25) of [10].

To illustrate this principle we describe here the peri-
odic counterpart of the best known version of the adap-
tive RLS lattice algorithm, i.e., the so-called quotient-
form with aposteriori residuals [1]. From the geometric
interpretation (6),(7), and using essentially the same
notation as in Table 15.4 of [1], we conclude that:

(i) The order-update relations remain independent of
the value of P , viz.,

fm(n) = fm�1(n) �Kf
m(n) bm�1(n� 1) (8a)

bm(n) = bm�1(n� 1)�Kb
m(n) fm�1(n) (8b)

with

Kf
m(n) = �m�1(n)=Bm�1(n� 1) (8c)

Kb
m(n) = ��

m�1(n)=Fm�1(n) (8d)

(ii) The time-update relations are modi�ed by the in-
troduction of a P -unit delay, viz.,

�m�1(n) = �P�m�1(n � P ) +
fm�1(n) b

�

m�1(n� 1)

m�1(n� 1)
(8e)

Fm�1(n) = �PFm�1(n� P ) +

�� fm�1(n)
��2

m�1(n� 1)
(8f)

Bm�1(n� 1) = �PBm�1(n� 1�P )+

�� bm�1(n� 1)
��2

m�1(n� 1)
(8g)

(iii) the conversion factor  is updated via the same
order recursion an in standard RLS, viz.,

m(n�1) = m�1(n�1)�
�� bm�1(n� 1)

��2
Bm�1(n� 1)

(8h)

In summary, this version of the adaptive P-RLS lattice
algorithm is identical in every respect to its standard
RLS counterpart, except for the presence of the P -unit
delay in (8d-f), and this di�erence disappears when we
set P = 1. The same conclusion holds true for every
exact implementation of the RLS algorithm, including
the standard RLS, the square-root RLS and all lattice
and transversal variants of the fast RLS.

4. EQUIVALENCE TO ALTERNATIVE

PERIODIC SYSTEM ID TECHNIQUES

In Sec. 2 we have justi�ed the periodic averaging
technique (4) by relating it to the method of optimized
averaging for time-variant moment estimation [9]. Here
we comment briey on the equivalence of (4) to several



other known techniques for identi�cation of periodi-
cally time-variant systems.

In the function series expansion approach of [4] one
represents the time-variant wi(n) in terms of their ex-
pansion coe�cients with respect to a sequence of given
(orthonormal) functions. In particular, periodic time
variation is characterized by Fourier series expansions
[3], viz.,

bwi(n) =
P�1X
q=0

�iq e
j 2�
P
qn (9a)

where P is the underlying period. The cost function
J(N ) of (2a) is then minimized with respect to the
parameters f�iqg, where now

e(n) = d(n)�
MX
i=1

bwi(n)xi(n) = d(n)�cW (n)X(n) (9b)

The solution of this quadratic optimization problem
leads to a set of MP Wiener-Hopf equations in the
MP unknown Fourier parameters

�
�iq ; 1 � i �M ; 0 � q � P � 1

	

Once the optimal �iq have been determined, the op-

timal periodic cW (n) is recovered via (9a). Since
the constraint imposed by the Fourier series expan-
sion (9a) is equivalent to the periodicity constraint
cW (n + P ) = cW (n), it follows that the method of

[3, 4] results in the same cW (n) as the one obtained
by solving the periodic least-squares problem (4).

The periodic least-squares characterization (4) co-
incides with the weighted least-squares (WLS) ap-
proach if one chooses the weighting sequence of WLS
to be the impulse response of either the averaging �lter
HP (z), or of its improperly scaled version [5, 6].

Since every (discrete-time) cyclostationary signals
can be viewed as a multichannel stationary signal, one
can bring standard (i.e., stationary) techniques to bear
on the periodic system identi�cation problem. One
such embedding is discussed in [7], where it is shown

that the resulting periodic estimate cW (n) satis�es
our characterization (4). The most direct embedding,
known as \circular" [12], can also be shown to result

in the same cW (n) as in (4) [8].

In summary, a variety of identi�cation methods
for periodically-variant linear systems all produce the
same estimate cW (n) as the periodic least-squares ap-
proach that we described in this paper.
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