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ABSTRACT

Radar images are affected by a multiplicative noise depend-
ing on the underlying signal (the ground reflectivity) due to the
coherence of the radar wavelength. Images present a strong pixel
to pixel variability considerably reducing the efficiency of target
detection and classification algorithms. We propose in this study
filtering this noise using image multiresolution analysis. The value
of the wavelet coefficients of the radar reflectance is estimated
by a Bayesian model by maximizing the a posteriori density and
by modeling the different densities using the Pearson distributions
system. The resulting filter combines a classical adaptive approach
and wavelet decomposItion using the local variance of the wavelet
coefficients for segmenting and weighting the latter taking into ac-
count the multiplicative nature of the noise.

1. INTRODUCTION

The advent of synthetic aperture radars has resulted in marked im-
provements in the spatial resolution of images. The nominal res-
olutions are now available below ten meters. Nevertheless, the
radiometric resolution of the ground targets is heavily degraded by
the presence of a multiplicative noise, typical of coherent imagery,
labeled as speckle noise. This results in an important reduction
in the efficiency of classification and target detection algorithms.
In order to improve the radiometric resolution, images generally
undergo a multiview processing during the formation stage of the
images by the processor. Hence, the averaging of L views of the
same scene permits the reduction of the gray level variance of a
homogeneous target by a factor L. Unfortunately, this radiometric
improvement is accompanied by a loss in resolution of the same
magnitude. Consequently, high resolution SAR images are char-
acterized by a low number of views which require the application
of filtering techniques.

Since the 8o’s, the techniques of speckle reduction have known
considerable development. To the first heuristic filters (median fil-
ters, Crimmins filter, etc) have succeeded adaptive filters taking
into account the local information content. Most of the adaptive
filters start from the consequences of the multiplicative model for
segmenting the image into homogeneous and heterogeneous zones
using the local normalized standard deviation. Over the heteroge-
neous zones, the ground reflectivity can be estimated by a simple
local mean. The different filters differ by the filtering of the het-
erogeneous zones; for instance the Lee [1] and Kuan filters use a
local MEQM criteria [2]. More recently, the Gamma -MAP filter
starts from well established models for the speckle and reflectivity
probability density functions (pdf). The application of a Maximum

A Posteriori (MAP) criteria leads to an estimation of the reflectiv-
ity as a solution of a second degree equation [3].

The method proposed here starts from a wavelet representa-
tion of the image. The objective is to filter the wavelet coefficients
obtained by suppressing the nosiy ones and weighting those en-
gendered by significant structures of the image. A few attempts
were made at filtering of SAR images by wavelet, essentially by
filtering the wavelet decomposition of the logarithm of the image
gray levels [4]. The problem of filtering can be reduced hence to
the case of an additive noise that is well mastered in the frame-
work of threshold methods [5]. This approach is not entirely sat-
isfactory, the estimator of the reflectivity obtained is biased and
the strong target reflectors are smoothed [6]. In the spirit of the
Gamma-MAP filter, a MAP criteria is applied to the domain of
the wavelet coefficients. The paper is organized in the following
manner : first, the hypotheses and the statistical models of the
image are presented (section 2). In section 3, we discuss briefly
the wavelet transform algorithm used. In section 4, the introduc-
tion of the multiplicative model permits the segmentation of high
frequency images into homogeneous, hetereogeneous and highly
heterogeneous zones. From gamma distribution hypotheses for
speckle and reflectivity, the moments of the wavelet coefficients
up to order 4 are expressed explicitly (section 5.2). As a model for
the different distributions, we apply the Pearson distribution sys-
tem leading to a type IV (section 5.2). The Bayesian estimation
of the wavelet coefficient of the reflectivity is then the solution of
a third-degree equation (section 5.3). The proposed algorithm is
tested on a monoview image and the results are compared to the
improved Gamma-MAP filter [3].

2. STATISTICAL IMAGE MODEL AND HYPOTHESIS

2.1. Nature and origin of the speckle

Speckle is a typical noise of coherent imagery (sonar, radar, etc.).
It results from interference phenomena between elementary backscat-
tering within the resolution cell [7]. The radar image presents
a large pixel to pixel variability which limits the performance of
classification and target detection algorithms.

2.2. Statistical models of SAR images

2.2.1. Speckle probability density function

In the case of an intensity image, the observed intensityX depend-
ing on the random process of the ground reflectivityY follows a
gamma law:



PXjY (xjy) = LL

yL�(L)
xL�1e�Lx=y

Usually the speckle random process is normalized, which gives
a random processZ of meanE[Z] = �Z = 1 and the pdf is
�(L;L):

PZ(z) =
LL

�(L)
zL�1e�Lz

This normalization leads to the multiplicative model largely
employed in the literature:

X = Y Z (1)

Random variablesY andZ are considered to be independent,when
the speckle is assumed to be fully developed. The multiplicative
model is considered valid within homogeneous and weakly tex-
tured areas. The relation (1) leads to the following relation be-
tween the different normalized standard deviations of the ground
reflectivity, the speckle and the intensity:

�X = �Y �Z = �Y (2)
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2.2.2. Reflectivity and intensity probability density functions

Different distributions are possible for modeling the probability
density function of the reflectivityY . The most widely used is
the gamma distribution. Incidentally, it is the basis for the Nezry
Gamma-MAP filter [3]:

PY (y) =
��

��Y �(�)
y��1e��y=�Y

Where�Y is the mean reflectivity in the considered zone, the de-

gree of heterogeneity is measured by� =
�2
Y

�2
Y

= 1=C2
Y . Pre-

suming a gamma pdf forY , we obtained aK pdf for the observed
intensity which has been proved to be well adapted at describing
reality [8].

3. MULTISCALE ANALYSIS

3.1. Principle

Multiresolution analysis permits the analysis of the signal in many
frequency bands or at many scales [9]. In practice, multiresolu-
tion analysis is carried out using a filter bank composed of a low-
passfhig and a high-passfgig filter. In the case of an image, the
filtering is implemented in a separable way by filtering the lines
and columns. The low-pass filtering of levelj provides an ap-
proximation of the initial image at the scale of2j . The high-pass
filterings give the images of the wavelet coefficients or the high
frequency images. The reader can refer to the papers of Mallat [9]
and Daubechies [10] for further explanations on multiresolution
analysis.

3.2. Stationary wavelet transform

Originally, multiresolution analysis was used for the purpose of
signal compression. The wavelet coefficients are sampled based
on the Nyquist criteria. The representation is accordingly non re-
dundant and the total number of samples in the representation is
equal to the total number of the image pixels. Pyramidal multires-
olution analysis is not desirable for estimation/detection problems.
The major inconvenience of this representation is that it does not
conserve an essential property in image processing, which is the
invariance by translation. This property insures that the contours
present in the image will be represented on the wavelet levels inde-
pendently from their position in the image. In order to preserve the
invariance by translation, the sub-sampling operation must be sup-
pressed [11], and the decomposition obtained is then redundant1

and is called a stationary wavelet transform [12] or a “`a trous” al-
gorithm [11]. The stationary wavelet transform was used success-
fully for the noise removal of audio signals [13]. In practice, the
structure in cascade of the filter bank does not change; the oper-
ations of sub-sampling and over-sampling are simply suppressed.
In order to conserve a half-band filtering at each levelj, 2j�1 ze-
ros are inserted between the coefficients of the low-pass and high-
pass filters. We noteW[j;�], the operator permitting to obtain the
wavelet coefficients at scale2j (where� 2 fh; v; dg designates the
horizontal, vertical and diagonal orientations respectively). The
imageX is thus decomposed into3J high frequency images and
one low frequency image:

X $ fA[J]X;fW[j;�]X; 1 � j � J; � 2 fh; v; dggg

4. HIGH FREQUENCY IMAGE SEGMENTATION

Using the filtering equations, we find a relation equivalent to the
relation (3):
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provides the power gain in the filtering process and can be ex-
pressed by the relation 11). Using the local estimation ofCWX ,
this relation permits the segmentation of the high frequency im-
ages into homogeneous (whereCWY � 0 ) and heterogeneous
(whereCWY > 0) zones. For strong reflectors where the radar
response is deterministic, the corresponding wavelet coefficients
must be conserved. A high threshold forCWX derived from the
threshold used in the Gamma-MAP filter [3] permits the preserva-
tion of these regions:

CWX ;max =

q
S
[j;�]
2

p
1 + 2=L (5)

5. MAP WAVELET COEFFICIENT FILTERING

5.1. Weighting of the wavelet coefficient using a MAP criteria

The filtering equation for obtaining the wavelet coefficients of level
j can be rewritten as follows:

1All the images obtained conserve the size of the initial image.



WX = W
[j;�]Y +W[j;�]Y (Z � 1)

= WY +WB

The pdf ofY depending on the observationX can be expressed
using the Bayes relation:

PWY jWX (wY jwX) =
PWX jWY (wX jwY )PWY (wY )

PWX (wX)

The estimatêwY maximizing thea posterioripdf then verifies
the following equation:

d
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jwY =ŵY = 0 (6)

In order to apply this Bayesian estimation, we have to establish
a model for the different pdf.

5.2. Probability density function of the wavelet coefficient

In the case of a gamma distribution hypothesis for the ground
reflectivity and the speckle, we can express the moments of the
wavelet coefficients up to order4. The Pearson distribution sys-
tem permits modeling using a differential equation, the unimodal
pdf f(x) having a tangent contact with thex axis at the extrem-
ities. The Pearson coefficients can be expressed simply from the
first 4 moments:

b1 = a = ��3(�4 + 3�22)

A
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A
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A
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and:

B0 = b0 + a2(1 + b2)
B1 = a(1 + 2b2)
B2 = b2

(8)

The type of distribution is indicated by the values
K = B2

1=(4B0B2). It can be shown that in the case of a gamma
distribution for the gray levels of the original image, the distribu-
tion of the wavelet coefficients is Pearson typeIV (0 < K < 1):
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Using the second moment functions2 [14] and the linear filtering
equations, we can express the first4 moments ofWY andWB .

2 logarithm of the moment generating function.
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WhereS[j;�]
n can be expressed simply in relation to the filter coef-

ficients.
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5.3. Maximum a posteriori equation

Assuming a typeIV model for the probability density function of
WY andWB , the MAP equation (6) leads to a single point MAP
estimateŵY which is the solution of a third degree equation:

A3ŵ
3
Y +A2ŵ

2
Y + A1ŵY + A0 = 0 (12)

with:

A3 = BB;2 + BY;2
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A1 = BB;2(UB(UB + 2VY ) + �2B)

+BY;2(UY (UY + 2VB) + �2Y )
A0 = �BB;2VY (U

2
B + �2B)�BY;2VB(U

2
Y + �2Y )

(13)
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Y
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6. RESULTS AND CONCLUSION

The image is at first decomposed into3J high frequency images.
Each high frequency image is segmented according to the proce-
dure described in section 4. The wavelet coefficients of the homo-
geneous zones are set at zero, equation (12) is applied in the het-
erogeneous zones while those in the highly heterogeneous zones
are conserved. Then, the filtered image is obtained by reconstruc-
tion from the high frequency images filtered accordingly. Figure
2 shows the result of the proposed filtering for the Figure 1 image
(J = 3, bi-orthogonal wavelets [10]). The classical Gamma-MAP
filter is provided for comparison purposes in Figure 3. Multiscale
filtering appears to better preserve details, in particular in the ho-
mogeneous areas for a same degree of smoothing.



            

Figure 1: Original image (RADARSAT, one look)            

Figure 2: Proposed filter with bi-orthogonal
wavelets (5 coefficients)            

Figure 3: Gamma-MAP filter
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