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ABSTRACT

In this paper an instrumental variable (IV) based subspace
tracking algorithm is proposed. The basic idea of the algo-
rithm is to reduce the amount of computations using a cer-
tain perturbation/approximation strategy. The complexity
is reduced to O(mn2), which should be compared to O(ml2)
for the SVD, wherem; l� n in general (m denotes the num-
ber of sensors, l denotes the number of instruments, and n
denotes the number of signals). The proposed algorithm
turns out to be related to Karasalo's subspace averaging
approach. In a series of simulations we demonstrate that
the detection-, stationary estimation-, and tracking perfor-
mance of the proposed algorithm is essentially equivalent
to that achieved by the truncated SVD.

1. INTRODUCTION

The sensor array signal processing problem has received
much attention in the literature. Especially, high resolution
subspace-based methods for DOA estimation have been in
the focus. Typical for these approaches is that a degrada-
tion of the performance occurs if the true noise covariance
matrix deviates from the assumption of spatial whiteness.
When the noise covariance is colored but known, this e�ect
can be eliminated by pre-whitening. However, since its es-
timation requires signal free measurements, pre-whitening
is in many cases not a realistic option. An approach that
does not require spatially white or known noise covariance
matrix is the method of instrumental variables (IV). The
applicability of IV methods in sensor array processing has
been studied in, for example [2, 4, 5].

Another aspect of the array processing �eld that has
drawn much attention, is the application of subspace-based
DOA estimation techniques to non-stationary environments.
However, most of the proposed \tracking" algorithms re-
quire spatially white noise.

The aim of this paper is to study a computationally
e�cient IV-based subspace tracking algorithm, that is ap-
plicable in non-stationary environments with colored noise.
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2. PROBLEM FORMULATION

Let x(t) 2 C
m�1 contain the observed samples of an an-

tenna array with m sensors, where it is assumed that n
narrow-band plane waves impinge on the array. Hence, the
following data model is applicable

x(t) = A(�)s(t) + e(t): (2.1)

The m�n matrix A(�) is deterministic, but possibly time-
varying (the vector � contains the n DOAs). The unmeasur-
able signal s(t) 2 C

n is assumed to be a stationary random
process with covariance matrix P = E[s(t)sH(t)], where
(�)H denotes conjugate transpose. The noise vector e(t)
is assumed to be zero-mean and independent of s(t). The
unknown noise covariance matrix is de�ned as

Q = E[e(t)eH(t)]: (2.2)

Typical for IV-based approaches are the following as-
sumptions. Assume that there exists an IV vector �(t) 2
C
l�1 , l � n such that

A1: E[e(t)�H(t)] = 0

A2: Rank
�
E
�
s(t)�H(t)

��
= Rank (Cs�) = n.

The assumption A2 is imposed to ensure that
Rank(ACs�) = n, which implies that R(ACs�) = R(A),
where R(A) denotes the space spanned by the columns of
A. Note, the DOAsmay be identi�able even ifA2 is not ful-
�lled, see [4]. However, since we in the present paper apply
ESPRIT, A2 is assumed to hold. With these assumptions

E[x(t)�H(t)] = Cx� = ACs�: (2.3)

Hence, the SVD of Cx� can be written as

Cx� = Us�sV
H
s (2.4)

where �s = diag(�1; : : : ; �n) is diagonal and nonsingular.
The key observation is that R(Cx�) = R(Us). That is, the
signal subspace is spanned by the n dominating left singu-
lar vectors of Cx�. In practice, Cx� is unknown. Hence,
the estimate of the signal subspace is typically taken as
the n principal left singular vectors of the estimated cross-
covariance matrix Ĉx�:

Ĉx� = Ûs�̂sV̂
H

s + Ûn�̂nV̂
H

n ; (2.5)



where �̂n 6= 0, in general. For reasons of statistical opti-
mality, di�erent post and pre weightings of Ĉx� may be
useful, see [4] for a detailed discussion. However, these

weightings are data dependent. Thus, not only Ĉx� need
to be updated as time goes, the weighting matrices must
be updated too. Therefore such weightings tend to increase
the overall complexity and are omitted in the present pa-
per. IV-vectors that ful�ll A1-2 can be found as (see for
example [4] for further details):

1) Spatial IVs: Consider an array that is divided into
subarrays. The outputs of one of the subarrays are taken as
instruments (this array may be uncalibrated). If the subar-
rays are su�ciently far apart, the noise in the main subarray
is considered to be uncorrelated with the IV-vector.

2) Temporal IVs: When a second subarray is not avail-
able but the signals are temporally correlated, an IV-vector
can be obtained by delaying the sensor outputs. This ap-
proach relies on that the temporal correlation length of the
signal is longer than that corresponding to the noise.

Implicit in the discussions above is that the signal sub-
space might be slowly time-varying. By slowly time-varying,
it is meant that z(t) and �(t) are approximately stationary
in a window of length 1=(1��), where 0� � < 1 is the so-
called forgetting factor. The cross-covariance matrix may
thus be estimated by

Ĉx�(t) = �Ĉx�(t� 1) + (1� �)x(t)�H(t): (2.6)

Our goal is to derive an e�cient algorithm which estimates
R(A(t)), given the subspace estimate at time-instant t� 1
and the snapshots x(t); �(t).

3. IV TRACKING BASED ON NOISE

SUBSPACE PERTURBATION

3.1. The Basic Algorithm

The true, but unknown, cross-covariance matrix satis�es
(by A1)

Cx� = ACx� = Us�sV
H
s (3.1)

where Us 2 C
m�n and, by A2, R(Us) = R(A). At time

t � 1, the estimated cross-covariance and its SVD is given
as

Ĉx�(t� 1) = Ûs�̂sV̂
H

s + Ûn�̂nV̂
H

n (3.2)

where �̂n 6= 0 with probability one. Next, collect new mea-
surements and update the estimate of the cross-covariance:

Ĉx�(t) = �Ĉx�(t� 1) + (1� �)x(t)�H(t): (3.3)

Computing the SVD of Ĉx�(t) would require O(ml2) com-
plex multiplications [1]. The basic question addressed in the
following is whether we can reduce this complexity without
sacri�cing too much accuracy.

De�ne the following quantities:

x� =
p
1� �x(t); �� =

p
1� � �(t) (3.4a)

xs = Û
H

s x�; �
H
s = �

H
� V̂s (3.4b)

c1u1 = x� � Ûsxs; c2v
H
1 = �

H
� � �

H
s V̂

H

s (3.4c)

where uH1 u1 = vH1 v1 = 1. Obviously, we have that

Û
H

s u1 = 0; v
H
1 V̂s = 0: (3.5)

Thus, u1 = �?
Ûs
x(t)=k�?

Ûs
x(t)k, and similarly for v1, where

�?
Us

denotes the orthogonal projection onto the comple-

ment of R(Ûs). Now, write

(1� �)x(t)�H(t) =
h
Ûs u1

i �
xs
c1

� h
�
H
s c2

i
| {z }

T1

"
V̂

H

s

vH1

#
:

(3.6)

Rather than computing the expensive SVD of Ĉx�(t), we
propose to compute the SVD of a perturbed matrix

�C(t) = Ĉx�(t) + "(t) (3.7)

where "(t) denotes some perturbation at time t. A useful
class of perturbations is given by

"(t) = ��Ûn�̂nV̂
H

n + ���1u1v
H
1 + ���2N1N

H
2 (3.8)

where ��1; ��2 � 0 are user-de�ned scalar quantities, and
N1;N2 denote matrices that have orthonormal columns and
ful�ll N1 ? fu1; Ûsg;N2 ? fv1; V̂sg. Note, the matrices
N1;N2 are only dummies, and are not explicitly calculated.
We can then write the matrix �C(t) as

�C(t) =
h
Ûs u1

i
T(��1)

"
V̂

H

s

vH1

#
+ ���2N1N2 (3.9)

where T(��1) = T1 +T2(��1), and

T2(��1) =

�
��̂s 0

0 ���1

�
: (3.10)

Next, compute the (n + 1)� (n+ 1) SVD of T(��1)

T(��1) = XSY
H : (3.11)

We �nd that the exact SVD of the perturbed matrix �C(t)
is given by

�C(t) =
h
Ûs u1

i
XSY

H

"
V̂

H

s

vH1

#
+ ���2N1N2

=
�
�Us n1

�
S

�
�V
H
s

nH2

�
+ ���2N1N2: (3.12)

Thus, the estimate of the signal subspace at time t is taken
as �Us, the estimate of the signal singular values is obtained
from a partition of S: ��s = S1:n;1:n, where we have used
a MATLAB-like notation. Note, at time t+ 1 we of course
replace Ûs(t) with �Us(t) in (3.4). The SVD of T(��1) is of
complexity O(n3). Due to the matrix-matrix multiplication
in (3.12), the overall complexity is O(mn2). In practical
scenarios where m; l � n, this complexity reduction may
be substantial. An advantage with the proposed approach
is that only the important parts of the approximation of
�C(t) is stored, and they are stored in a factored form.



3.2. Preliminary Analysis

Let's discuss some possible alternatives for the user-de�ned
quantities ��1; ��1:

1) ��1 = ��2 = 0: This case corresponds simply to omit

the term Ûn�̂nV̂
H

n in (3.2). A theoretical motivation that
justi�es this ad-hoc step if given by Theorem 8.6.5 in [1].

This Theorem (roughly) states that \O(�) changes in Ĉx�(t)
can alter a singular subspace by an amount O(�=�) where
� measures the separation of the relevant singular values".
In the scenario considered herein,

� � k�Ûn�̂nV̂
H

n kF = �

vuutmin(m;l)X
i=n+1

�̂2i (3.13)

tends to be \small", due to the low-rank structure of (2.3),
and there will be a \large gap" between the signal and noise
singular values. Thus, the error in the approximated signal
subspace will be \small". Furthermore, the error in the
signal singular values will also be small, since from corollary
8.6.2 in [1] it holds that

j�k( �C(t))� �k(Ĉx�(t))j � �n+1(Ĉx�(t)): (3.14)

2) ��2 = 0: In this case we include a term ���1u1v
H
1

which may be characterized as an instantaneous approxi-

mation of the \noise matrix" Ûn�̂nV̂
H

n . This since u1 2
R(Ûn);v1 2 R(V̂n). Now, minimize the norm of the per-
turbation with respect to ��1, and we �nd that

��opt1 = Re
�
x
H(t)Ûn�̂nV̂

H

n �(t)
�

(3.15)

�opt = �

vuutmin(m;l)X
i=n+1

�̂2i � �(��opt1 )2: (3.16)

Consequently, we may choose an ��1 so that the norm of the
perturbation is smaller than in the previous case. However,
there is no obvious implication that the statistical quality
of �Us is improved with this \optimal" choice. A better ap-
proach would be to choose ��1 so that the distance, see [1],
between �Us and its SVD counterpart is minimized. Such an
analysis is however a topic for future research. In the simu-
lations we heuristically have chosen ��1(t) = Sn+1;n+1(t�1),
which in our simulations have not degraded the performace
compared to (3.15).

3) ��1 = ��2 6= 0: Compared to case 2, this choice of
perturbation does not in
uence any of the computations.
However, this choice brings up the possibility to interpret
the proposed algorithm as an IV counterpart of Karasalo's
subspace averaging algorithm [3]. In fact, it can be shown
that if �(t) = x(t), this approach corresponds exactly to [3].
These interpretations lead us to de�ne

��1(t) =
1

~n
Sn+1;n+1(t) +

~n� 1

~n
���1(t� 1); (3.17)

where ~n = min(m; l). For this to be meaningful, at every
time t, it should hold that

��1(t) � Sn;n(t): (3.18)

In words this mean that the estimated \noise level" should
be smaller than the smallest signal singular value. This can
be proven to hold, but for the proof of this fact we refer to
the full version of this paper.

There are several problems with designing an IV coun-
terpart of Karasalo's algorithm. First of all, Karasalo's al-
gorithm results fromminimizing a very natural least squares
criterion. For the above IV version, we have not found such
a strong motivation. Another problem that occurs when
attempting to �nd an IV version, lies in the freedom of
choosing noise eigenvectors utilized by Karasalo. In the
present case we can write

u1 = Ûnt1; and v1 = V̂nt2; (3.19)

for some unity norm vectors t1; t2. The di�culty is that
t1 6= t2 in the IV-case, whereas

t1 = t2; and Ûn = V̂n (3.20)

in Karasalo's algorithm. In conclusion, even if we have no
well-motivated criterion as the basis for the proposed algo-
rithm, the fact that �(t) = x(t) leads to Karasalo's algo-
rithm, allow us to interpret the proposed algorithm as an
IV based subspace averaging algorithm.

Even though we should except ��1(t) � 0, compared to
��1(t) � �2 in the \non-IV" spatially white noise case, (3.17)
handles the possibility that n is time-varying. Furthermore,
we believe that this is a more accurate description of the
fact that �̂n � 0, with probability one. In the examples, we
demonstrate that ��1(t) is as good in detecting changes in n
as are the noise singular values of the SVD. In case 1 and
2 above, Sn+1;n+1 is used as such an indicator. The main
advantage with the averaging approach is that then ��1(t)
has a built in smoothing, thus they are less noisy. Which
one of the proposed perturbation strategies is the best, in
terms of accuracy of �Us, is a topic of further research.

A non-trivial problem is to analyze how the errors in-
troduced by the proposed algorithm propagates. Since the
errors propagate through non-linear and time-variant �l-
tering, this is di�cult. So far we have no results on the
convergence properties of the proposed algorithm, and we
have to resort to simulations.

4. EXAMPLES

In this section the results of the proposed algorithm is com-
pared with the estimates obtained from the truncated SVD
of Ĉx�. In a sense, given Ĉx� the truncated SVD is the
best possible way to �nd the subspace estimate. It is there-
fore interesting to compare the SVD-based estimates with
those of the proposed algorithms. The DOA estimates are
found using the ESPRIT algorithm. A ULA of 12 elements
is studied. The �rst m = 6 sensors form a calibrated subar-
ray, whereas the outputs of the last l = 6 sensors are used
as IVs. Both subarrays are corrupted by additive zero-
mean temporally white Gaussian noise, independent from
subarray to subarray. The noise covariance matrix of both
subarrays have (k; l):th element

[Q]k;l = �20:9jk�ljej
�

2
(k�l): (4.1)
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Figure 1: a) #sources present. b) Relative error in the
SV. Solid: largest SV, Dotted: Second largest SV. c) Sec-
ond largest SV of the proposed approach d) Dotted: sum
of noise singular values, Solid: Estimate from proposed ap-
proach (case 3). � = 0:98. SNR=10 dB.

� / SNR -10 -5 0 5

0.95 7.74 2.69 1.01 0.488
0.97 6.44 1.85 0.720 0.384
0.99 3.12 1.01 0.434 0.224

Table 1: RMSE (in (�)�) for SVD.

This noise is reminiscent of a signal cluster at � = 30�. The
noise level �2 is adjusted to give a desired SNR de�ned as,
SNR=1=�2. In Fig.1, we plot the estimated signal singular

values and the singular values of Ĉx�(t) (and the relative
error) in a scenario where the number of signals is time-
varying, the DOAs are [0� 20� 10�]. The emitter signals
are zero-mean white and Gaussian, P = I, and SNR=10
dB. The algorithms are run with the hypothesis that n = 2.
Based on some threshold strategy, the conclusion is that the
proposed algorithm would decide the same changes in n as
does the SVD. Note, the large relative error in the interval
300-600 is due that the singular values are close to zero.

Consider next the stationary performance. In this sce-
nario, two planar wavefronts arrive at DOAs [0� 20�]. In
Tables 1 and 2 we summarize the outcome from 500 Monte
Carlo simulations. The conclusion is that the proposed al-
gorithm has essentially equivalent estimation accuracy as
has SVD for high to medium SNR's, and slightly worse for
low SNR's.

Finally, consider a tracking example, see Fig. 2. In
this simulation there are two sources present, and the DOA
of one of the sources is time-varying. The emitter signals
are once again zero-mean, temporally white, and Gaussian,
P = I with SNR=10 dB. Study especially the relative error
for the time-varying source!

� / SNR -10 -5 0 5

0.95 8.22 2.75 1.02 0.488
0.97 6.96 1.91 0.725 0.385
0.99 3.54 1.05 0.436 0.224

Table 2: RMSE (in (�)�) for the proposed algorithm (case
1)
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Figure 2: Tracking performance. Top: The DOA trajec-
tories for the proposed case 1 algorithm (dashed) and the
true DOAs (solid). Bottom: The relative error compared
to the SVD. � = 0:97, SNR=10 dB.

5. CONCLUSIONS

In this paper we have proposed an O(mn2) IV-based sub-
space tracking algorithm. This low complexity is achieved
by applying a certain perturbation strategy. Based on the
simulation results, the conclusion is that we signi�cantly
have reduced the amount of computations at very little cost
in terms of estimation and detection accuracy.
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