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ABSTRACT

A distributed algorithm for MIMO adaptive �ltering is in-
troduced. This algorithm distributes the adaptive compu-
tation over a set of linearly connected computational mod-
ules. Each module transmits data to and receives data from
its nearest neighbor. A back-propagation LMS based al-
gorithm is presented for adapting the parameters in each
module. The performance surface is explored to identify
upper bounds on each parameter and guidelines for choos-
ing the LMS algorithm step sizes. An example illustrates
application of the algorithm.

1. INTRODUCTION

Adaptive systems with large numbers of inputs and out-
puts present signi�cant computational challenges since the
number of adaptive �lters is given by the product of the
number of inputs and outputs. For example, many tens of
inputs and outputs are often used in active noise control
applications [1], [2].

In this paper we present a distributed algorithm for im-
plementing adaptive MIMO systems based on splitting the
adaptive algorithm over a set of linearly connected com-
putational modules [3]. Each module is assumed to have
at least one input signal, one output signal, and exchanges
data with its two neighboring modules. The output of each
module is based on a linear combination of its input signal
and the data from adjacent modules. The data passed to
the module on the right (left) is a linear combination of the
input and data received from the module on the left (right).
This approach distributes the computational burden over
many local processors and improves the fault tolerance of
the system. It also allows the number of inputs and outputs
to be increased or decreased by simply adding or removing
modules.

The paper is organized as follows. First, the function
of each module is de�ned and the MIMO impulse response
expressed in terms of the parameters associated with each
module. An LMS based adaptive algorithm for adjusting
the parameters in each module is then presented. Guide-
lines for selecting the initial conditions and step sizes asso-
ciated with each parameter are given. The paper concludes
with an example illustrating performance of the algorithm.
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2. MODULAR IMPLEMENTATION OF MIMO

SYSTEMS

For simplicity of presentation we consider a J input, J out-
put MIMO system consisting of M tap FIR �lters. Let
ui(n) denote the input from the ith channel and yj(n) rep-
resent the output to the jth channel. De�ne ui(n) = [ ui(n)
ui(n � 1) : : : ui(n�M+1) ]T as a column vector of present
and past inputs so that the jth output is expressed as

yj(n) =

JX
i=1

h
T
i;jui(n); j = 1; 2; : : : ; J (1)

where hi;j is a vector representing the impulse response
from input i to output j. Equation (1) is rewritten in matrix
form as 2
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Without loss of generality, we assume each module or
node in the modular implementation has one input and one
output, as illustrated in Fig. 1. The output for the ith node
is de�ned by

yi(n) = w
T
i;iui(n) +w

T
i�1;isi�1;i(n) +w

T
i+1;isi+1;i(n) (4)

where wi;i;wi�1;i; wi+1;i are weight vectors, and si�1;i(n)
and si+1;i(n) denote the P -dimensional data vector commu-
nicated to node i from nodes i � 1 and i + 1, respectively.
That is, the output of each node is a linear combination of
the input and the data received from adjacent nodes. The
ith node also determines data vectors si;i�1(n) and si;i+1(n)
for adjacent nodes as follows

si;i�1(n) =K
T
i;i�1ui(n) +K

T
i+1;i�1si+1;i(n) (5)

si;i+1(n) = K
T
i;i+1ui(n) +K

T
i�1;i+1si�1;i(n) (6)



Here the matrices Ki;i+1 and Ki;i�1 are M by P while
Ki+1;i�1 andKi�1;i+1 are P by P . That is, the data shared
to the left (right) is a linear combination of the input and
the data received from the right (left). Our convention here
is to use the �rst subscript in doubly subscripted quantities
to represent \from", and the second subscript to denote
\to". For example, Ki�1;i+1 describes how data is commu-
nicated \from" node i� 1 \to" node i+ 1.

The impulse response from any input to any output is
generally a function of several w vectors and multiple K
matrices. Using Eqs. (4), (5), and (6), it is a straightfor-
ward excercise to show that

hi;j =

8<
:

wi;i; i = j

Ki;i+1

Qj�1

m=i+1
Km�1;m+1wj;j�1; j > i

Ki;i�1

Qj+1

m=i�1Km+1;m�1wj;j+1; j < i

(7)

If J = 4, then the �rst two columns of H in Eq. (3) are

w1;1 K2;1w2;1

K1;2w1;2 w2;2

K1;2K1;3w2;3 K2;3w2;3

K1;2K1;3K2;4w3;4 K2;3K2;4w3;4

and the last two columns of H are

K3;2K3;1w2;1 K4;3K4;2K3;1w2;1

K3;2w3;2 K4;3K4;2w3;2

w3;3 K4;3w4;3

K3;4w3;4 w4;4

Note that there is full coupling between all inputs and out-
puts, since all the entries in H are nonzero.

3. LMS BASED ADAPTIVE ALGORITHM

In general, we consider the situation in which the errors
are measured at the output of a second, known MIMO sys-
tem. In an active noise control application, this second
system represents the combined e�ects of the speakers and
acoustic paths from each speaker to each error microphone.
Let ck;l denote the length N impulse response between the
kth output, yk(n), and the point at which the lth error is
measured. Let dl(n) denote the desired signal and de�ne
yk(n) = [yk(n) yk(n� 1) : : : yk(n�N)]T in order to write
the error as

el(n) = dl(n)�

JX
k=1

c
T
k;lyk(n) (8)

The cost function to be minimized is the mean-squared error
(MSE)

C =

JX
l=1

Efe2l (n)g (9)

The MSE depends only indirectly on the parameters
that we seek to adapt, the w's and K's. Furthermore, the
MSE depends on products of w's and K's because each
hi;j in (1) is a product of one w and several K's. Hence,
we have taken a back-propagation approach [4], [5] to de-
velop an LMS based adaptive algorithm. First, the error is
propagated back through the ck;l �lters using the temporal

back-propagation algorithm described in [5]. Next, the er-
ror is propagated back through the w's and K's to obtain
local errors for each parameter in the modular implementa-
tion. Note that in contrast to a neural network application
of back propagation, the errors do not need to be back prop-
agated through nonlinearities. Space constraints preclude
full derivation of the algorithm, so we only present the re-
sult.

The w's are adapted as follows:

wi;i(n+ 1) = wi;i(n)� �1�
y
i (n)ui(n�N)

wi+1;i(n+ 1) = wi+1;i(n)� �2�
y
i (n)si+1;i(n�N)

wi�1;i(n+ 1) = wi�1;i(n)� �2�
y
i (n)si�1;i(n�N)

where the local error �yi (n) is given by

�
y
i (n) = �

JX
l=1

[ el(n�N) el(n�N + 1) : : : el(n) ]ci;l

The K's are adapted according to

Ki;i+1(n + 1) = Ki;i+1(n)� �3��
s
i;i+1(n)u

T
i (n�N)
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T
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s
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T
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�4��
s
i;i�1(n)s

T
i+1;i(n�N)

where the local error vectors are given by

��
s
J�1;J (n) = �

y

J(n)wJ�1;J (n)

��
s
i;i+1(n) = �

y
i+1(n)wi;i+1(n) +K

T
i;i+2(n)��

s
i+1;i+2(n)

for i = J � 2 down to 1, and

��
s
2;1(n) = �

y
1 (n)w2;1(n)

��
s
i;i�1(n) = �

y
i�1(n)wi;i�1(n) +K

T
i;i�2(n)��

s
i�1;i�2(n)

for i = 3 to J . Note that the updates for the w's and K's
have a familiar form: the new value is equal to the old value
minus a step size parameter times the product of the local
error and the input to the parameter being adapted. The
N sample delay associated with the input term in each up-
date is a consequence of causality requirements when back
propagating the error through the N tap �lters ck;l.

4. CONVERGENCE ANALYSIS

The shape of the MSE as as a function of the w's and K's
o�ers information about the convergence behavior of the
algorithm. Substitute for yk(n) in (8) to obtain

el(n) = dl(n)�

JX
k=1

q
l T
i;k (n)hi;k (10)

where ql Ti;k (n) = [ ui(n) ui(n� 1) : : : ui(n�N) ]ck;l repre-

sents a vector containing values of the ith input �ltered by



ck;l. Now de�ne vectors ~ql(n) = [ ql T1;1 q
l T
2;1 : : :q

l T
J;J ] and

~h = vecfHg so that (10) can be rewritten as

el(n) = dl(n)� ~ql(n)~h (11)

Hence, the MSE (9) can be expressed in the form

C = �
2 � 2pT ~h+ ~hTR~h (12)

where �2 =
PJ

l=1 Efd
2
l (n)g, p =

PJ

l=1 Ef~ql(n)dl(n)g, and

R =
PJ

l=1
Ef~ql(n)~qTl (n)g. Here p represents the cross-

correlation between the �ltered inputs and desired signals,
while R is the correlation matrix associated with the �ltered
inputs.

First, note that the MSE is a quadratic function of ~h,
but it is not quadratic in the w's and K's since (7)indicates

that ~h is a function of their products. Second, the global
minimum is unique in ~h if R is nonsingular, which implies
the �ltered inputs represented by ~ql(n) are persistently ex-
citing. However, the global minimum is not unique in the
w's and K's, again because ~h depends on products of w's
and K's. Many di�erent choices for the w's and K's can
result in the same ~h.

Considerable information about the shape of the per-
formance surface is obtained by examining the Hessian of
the cost function. In particular, a positive de�nite Hessian
implies a single global minimum, a semi-de�nite Hessian in-
dicates the existence of a plateau, and a negative de�nite
Hessian indicates the presence of a global maximum. If �
and � are any two parameters (elements of the w's or K's),
then the elements of the Hessian matrix are given by

@2C

@�@�
=

@~hT

@�
R
@~h

@�
+
�
~hTR+ pT

� @2 ~h

@�@�
(13)

While it can be shown that the �rst term is associated with
a positive de�nite component of the Hessian, the second
term may make the overall Hessian inde�nite. However,
this second term is zero under the following conditions:

� � = �. This implies the diagonal elements of the

Hessian are given by the quadratic form @~hT

@�
R @~h

@�
.

This quantity is always positive since R is positive
de�nite. Hence, the performance surface in any single
parameter is quadratic with a single global minimum.
Second, this implies the trace of the Hessian is always
positive, so sum of eigenvalues is positive and the
Hessian matrix cannot be negative de�nite. Thus,
there are no local maxima. Saddle points exist when
one or more eigenvalues are negative.

� When � and � are elements in a given w or K or
elements in any w and K that do not appear in the
same hi;j (see (7)). In any subspace satisfying this
condition, the performance surface is quadratic with
a single global minimum. For example, K2;1 andK1;2

appear only in disjoint hi;j and the performance sur-
face is quadratic in the subspace de�ned by K2;1 and
K1;2. Thus, the performance surface may be non-
quadratic only in subspaces de�ned by parameters
that interact in a single hi;j , such as K4;3 and K4;2,
which both appear in h1;4.

We now turn our attention to selection of the step size
parameters. Consider adapting a single parameter � while
holding all other parameters �xed. The cost function is ex-

pressed in terms of � as �2r � 2po�+ �2o where r = 1
2
@2C
@�2

.
Analysis of the standard LMS algorithm for adapting �

indicates that the step size � must satisfy � < 2
r
to in-

sure convergence, so the maximum step size decreases as r
increases. An upper bound on r is obtained from (13)by
noting
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����
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trR (14)

However,
������ @~h@� ������2

2
depends on the values of the parameters

that are �xed. As their magnitudes increase,
������ @~h@� ������2

2
gener-

ally increases without bound. This suggests that we place
upper bounds on all parameters in order to insure stabil-
ity with a �xed step size. Upper bounding all parameters
also prevents excessive drift along any trajectory associated
with minimum mean squared error.

An upper bound on the parameters must be chosen so
that the region in which adaptation is permitted contains at
least one minimum of the performance surface. To do so we
assume that the maximum gain from input to output at any
frequency is upper bounded by a constant c at the optimum.
That is, the optimum �lters satisfy max
 jHi;j(e

j
)j � c.
Let K1 and K2 be the upper bound on the absolute value
of any element ofK's with subscripts o�set by one and two,
respectively, W1 be the upper bound on the absolute value
of any element of wj;j�1 or wj;j+1 and W0 be the upper
bound on the absolute value of any element in wj;j. By
applying various matrix norm inequalities to (7), we may
show that the condition jHi;j(ej
)j � c implies

W0 �
c

M
(15)

W1K1 �
c

PM
for ji� jj = 1 (16)

W1K1(PK2)
ji�jj�1 �

c

PM
for ji� jj � 2 (17)

These conditions are satis�ed with equality independent of
i and j by choosing W0 = c

M
, W1 = K1 =

p
c

PM
, and

K2 = 1
P
. Hence, we limit adaptation to the interior of

a cube de�ned by the maximum gain, c, number of �lter
taps, M , and dimension of the data vector communicated
between nodes, P .

Bounds on the step size may be determined from the
upper bounds on the parameter values. Again applying ma-

trix norm inequalities, we obtain upper bounds on
������ @~h@� ������2

2
and the corresponding step size bounds. Summarizing, the
maximum step size for wi;i is �1 < 4

trR . The maximum

step size for wi+1;i and wi�1;i takes the form 4
c�(i) trR , that

for Ki;i+1 and Ki;i�1 takes the form 4M
c�(i) trR , and that for

Ki�1;i+1 and Ki+1;i�1 takes the form 4M
c2�(i) trR

. In each

case, �(i) counts the number of hi;j in which the parameter



occurs. For example, wi;i�1 occurs in J� i+1 di�erent hi;j
so �(i) = J � i+ 1, while Ki+1;i�1 occurs in (J � i)(i� 1)
di�erent hi;j so in this case �(i) = (J � i)(i� 1). The de-
pendence of �(i) on i implies that the maximum step size
is also a function of the node index.

The term trR may be upper bounded in terms of eas-
ily measured quantities by applying standard matrix norm
inequalities. We obtain

trR � NM

 
JX

i;j=1

c
T
i;jci;j

!
LX

k=1

�
2
k (18)

where �2k is the power in the kth input channel.

Several quali�cations are in order regarding the step size
bounds. First, the step size analysis did not consider the
e�ect of the delay by N samples in the update term associ-
ated with backpropagation through the ci;j . Delays in the
update have a destabilizing inuence [6], and thus the up-
per bounds will need to be reduced to insure stability when
N � 1. Second, the bounds were obtained by considering
the worst case stability conditions for a single parameter.
While this does not gaurantee stability in all directions of
the parameter space, we have not yet encountered an ex-
ample in which instability occured using these bounds.

Lastly, note that we cannot use initial conditions of all
zeros since then si�1;i(n) and si+1;i(n) are zero and the K's
and w's (except for wi;i) never adapt to a nonzero value.
All zeros represents a saddle point in the performance sur-
face. Thus, the gradient is very small in the vicinity of the
origin, and adaptation is slow. This suggests that fastest
convergence is obtained by choosing initial conditions away
from the origin.

5. EXAMPLE

The adaptive algorithm is demonstrated using a J = 5 node
system based on M = 5 tap �lters and P = 5 data values
communicated between nodes. We chose N = 0 in order to
eliminate the destabilizing inuence of delays in the updates
associated with backpropagation through the ci;j . Hence,
each ci;j is a scalar and was chosen as a random number
uniformly distributed between zero and one. The input to
each channel is independent white noise of unit variance.
The desired signals dl(n) were generated by passing the
input through a 5 input, 5 output system composed of �ve
tap FIR �lters. Hence, in this case the MSE is driven to zero
if the adaptive algorithm converges to an optimal solution.
The maximum gain at any frequency, c, was set at one.

Figure 2 depicts the MSE as a function of the number of
adaptive algorithm iterations for thirty trials with di�erent
initial conditions. The step sizes for each parameter were
set at the upper bound presented in the previous section.
The initial conditions for each parameter were chosen as
the maximum permissible values with the sign randomized,
that is, the values �W0;�W1;�K1;�K2, respectively. The
results indicate that the algorithm converges consistently,
independent of the initial conditions.
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Figure 1: Modular MIMO Adaptive Filter.
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