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ABSTRACT

Antenna arrays are likely to be an important feature of
future mobile communication systems. With an antenna
array, mobile users can be separated by a spatial filtering
procedure allowing several users on the same carrier fre-
quency. The uplink part (mobile to base) not only can, but
is better solved without using any spatial knowledge in
terms of direction of arrival (DOA). However, DOA estima-
tion remains an important issue in the overall system, both
for downlink beamforming, as well as channel allocation.
Previous results have shown that DOA-estimation is best
performed in a post-detection manner, i.e., using the esti-
mated symbol sequence for DOA estimation. In this way,
the estimation problem can be decoupled to treat individual
users separately. To estimate the number of propagation
paths from a specific user, a detection scheme is derived
based on the DOA estimation criterion function.

1.  INTRODUCTION

Algorithms for separation of multiple signals arriving at an
antenna array have been a major research issue during the
last couple of years. A key result is that algorithms based on
the structure of the signal itself, rather than the spatial
structure, by far outperform traditional algorithms based on
direction of arrival (DOA) estimation and beamforming
([1]-[3] and the references in [4]). The latter DOA-type
algorithms rely on a signal model assuming that the signal
arrive at the array from a distinct DOA, or in a narrow clus-
ter. This is not true in a multipath channel with sometimes
widely spread scatters. In comparison, signal structure
based algorithms make no assumptions about DOA:s and
related channel parameters.

The limitation of the signal structure based techniques is
that they are only applicable on theuplink (i.e. transmission
from mobile to base). The uplink beamformer provided by
the algorithm is likely to be useless in the downlink. This is
usually true regardless of the duplexing scheme employed:
in a Time-Division Duplex (TDD) system, where the up-
and downlink employ the same carrier frequency, fading
will cause the channel to change during the uplink process-
ing delay. In a Frequency Division Duplex (FDD) system,
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with different carrier frequencies for the up- and downlink,
the fading will be different even at zero processing delay.

Consequently, estimation of channel parameters, such as
the DOA:s, is still a matter of interest. This is not only the
case in the context of downlink beamforming. A high-per-
forming estimation scheme is also an important tool to ana-
lyse experimental array data in order to acquire knowledge
of channels, and models thereof.

An ML-estimator for the DOA:s in a flat fading environ-
ment was proposed in [4]. This estimator is based on a mul-
tipath propagation model. The approach taken is tofirst
apply a signal structure based algorithm to estimate the
transmitted symbol sequence, andthen estimate the DOA:s.
This post-detection approach gives a significant improve-
ment in signal to interference ratio compared to the classi-
cal pre-detection estimator. It was shown in [4] that the
signal estimated by the signal structure based algorithm can
be regarded as being exact at low symbol error rates (SER).
Also, the estimation problem decouples, meaning that
cochannel users can be treated independently. Another
interesting result is that the asymptotic performance does
not suffer from not knowing the interference covariance [5].
The focus is now turned towards detection of the number of
significant propagation paths. The detection scheme to be
proposed also applies to the case of delay spread channels.

2.  ESTIMATION

The signal received by anm-element base station antenna
array in a flat fading environment can be modeled as

(1)

wheres(n) is the signal symbol to be estimated by the sig-
nal structure based (blind or semi-blind) algorithm. The
term j(n) models the total interference which might have
several sources: inter- and intracell cochannel interference
and thermal noise. The total interference is modeled as a
temporally white circularly symmetric Gaussian process
with arbitrary spatial covariance. The vectorh is thespatial
signature, which can be modeled as a sum of responses due
to d wave propagation paths:
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The vector function  (the array manifold) represents
the array response to a unit signal from the DOA ,
whereas  is the complex amplitude of pathi. The distinct
DOA:s are collected in a parameter vector

. The ML-estimator of  andb, accord-
ing to the model (2) including the effect of modeling errors,
was considered in [4].

It is easy to extend the above model to cover for delay
spread (lettingL+1 be the filter length):

(3)

A better physical model is given by reformulating in terms
of DOA:s, path amplitudes and delays as

(4)

where  is a (L+1) × 1 row vector describing the
effects of pulse shaping, amplitude, as well as time delay
for path i. CollectingN array snapshots, a general block-
model for both (2) and (4) is given by

(5)

where  etc.

An approximate ML-estimate of the DOA vector  is
given as the minimizing argument of [5]

(6)

where

(7)

with  being a Hermitian square-root of the inverse of
the estimated interference covariance matrix

(8)

 is given as

(9)

where  serves to decorrelate the signal basis. ‘Hats’
on S and  are omitted since the estimated signal can
be regarded as being exact at low symbol error rates [4].
Note that in the caseL = 0, (6) coincides with the exact
ML-estimator [5].

3.  DETECTION

The previously presented estimator presumes the number of
propagation paths,d, to be known. In practice, this is not
the case, and a simple detection scheme can be formulated
based on the statistics of the criterion function (6), in anal-
ogy with the WSF detection scheme in [6].

3.1 General Detection Statistic
Theorem 1: The ML-criterion (6), normalized by the multi-
plicative factor 2N, is asymptotically chi-squared distrib-
uted with  degrees of freedom, when
evaluated at . When evaluated at the estimate , the
asymptotic distribution is still chi-squared, but with

 degrees of freedom.

Proof: The estimated interference covariance matrix is esti-
mated based on sample moments, implying that

(10)

The error in the estimated weighting matrix
will be of the same asymptotic order:

(11)

From (9), the weighted channel matrix estimate is

(12)

The rows of the transformed signal matrix  are now a set
of orthonormal basis functions.

Each column of  is given by

(13)

The projection matrix (7) can be factorized as

(14)

where  is a unitary matrix of sizem× (m-d). TheL+1
vectors  are transformed into a new set of size (m-d) × 1
vectors

(15)

and the criterion (6) is rewritten as

(16)
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ĝ
˜

0 … ĝ
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(17)

In view of the central limit theorem, the asymptotic distri-
bution of  at  will be Gaussian with moments

(18)

(19)

(20)

where the latter follows from the assumptionJ being circu-
larly symmetric2. The rest of the proof follows from [6].

Theorem 1 leads to the following result.

A Criterion-based Detection Scheme:

1. Set .
2. Null hypothesis,Ho:

3. Set a thresholdγ based on the tail area of the chi-square
distribution with  degrees of free-
dom.

4. If  acceptHo and stop, else set
and return to 3.

The thresholdγ gives the conditional probability of detec-
tion . The overall unconditional proba-
bility of a correct detection depends on the probability of
underestimatingd, and is given as

(21)

The proposed scheme does not give consistent detection,
i.e.,  as  [6]. However, consistency is not an
important issue here as the channel parameters are time-
varying, and processing will always be performed on finite
block lengths (N). The scheme can be compared to the one
in [8], but differs in a major aspect: the latter does not allow
the detection problem to decouple. The decoupling is a con-
sequence of the exploitation of the estimated symbol
sequence. An advantage of the above scheme as compared
to detectors based on information theoretic criteria, such as

2. From relations (18) to (20), the residuals of (6) are white,
which shows that (6) is the (asymptotically) best weighted sub-
space fitting criterion for known signals in unknown noise.

MDL [9], is that the latter requires DOA estimation also for
one excess path, i.e. .

3.2 Alternative Weighting
In some applications it might be advantageous to weight
data with  in place of , in order to reduce the
computational complexity. An example is if several users’
channels are to be estimated from the same array data. The
operations  and ,A being the array manifold, then
only have to be carried out once. From an estimation point
of view, this does not affect the asymptotic performance. It
is easy to show that the same holds for detection:

Theorem 2: If  in (6) and (7) is replaced with
Theorem 1 still holds.

Proof: With , equation (19) will be

(22)

as  lies in the nullspace of . The statistics of
remain unchanged.

One can add that in a situation where the true  is ill-con-
ditioned (high signal to noise ratio (SNR)), andN is small,
it is wise to regularize , to avoid statistical instability.

4.  EXAMPLES

The first example is similar to the one in [4]. Two mobile
cochannel users transmit QPSK-modulated signals in bursts
of N = 200 symbols simultaneously. An 8-element uniform
linear array (ULA) is used for reception. The two signals
are observed in additive spatially and temporally white
Gaussian noise. The channels linking the mobiles to the
base station are frequency flat 2-ray (d = 2) channels with
parameters (2)  and , rel-
ative to the array broadside, and . The
proposed estimation/detection scheme was employed to
estimated and . The alternating projections algorithm of
[10] was used to minimize (6).

Figure 1 shows the resulting unconditional probability of a
correct detectionPD (21) for various SNR:s. The condi-
tional probability of detection (PDd), determining the
thresholdγ, was varied from 95% - 99%. A vertical line is
included in the plot to indicate at what SNR the estimation
rms-error is 4o, i.e. half of the angular separation of the two
rays.
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Figure 1. Frequency flat channel. Probability of correct
detection (PD), versus SNR, for different conditional detection
probabilities.

The second example involves a delay spread channel with
L+1 = 4. Again two users transmit QPSK signals in bursts
of 200 symbols. The channels are 3-ray channels with
parameters  and

(23)

The detection performance for this setting is shown in Fig-
ure 2. The vertical line is now drawn where the largest rms
estimation error is 2.5o.

Figure 2. Channel with delay spread. Probability of correct
detection (PD), versus SNR, for different conditional detection
probabilities.

Two things can be seen from the Figures. First, the detec-
tion threshold (expressed in SNR) is somewhat lower than
the estimation threshold. This means that the detection
scheme provides reliable detection in the region where the
DOA:s can be estimated with good accuracy. Second, it can
be seen that the false alarm probabilitiesPFAi in (21) are
small. The unconditional detection probabilityPD can be
kept in control by setting an appropriate thresholdγ.

5.  CONCLUSIONS

A detection scheme to estimate the number of signal paths
arriving at an antenna array in a multipath scenario has
been proposed. The detection scheme is based on the statis-
tics of the criterion function employed by the DOA estima-
tor. As the estimator is decoupled,i.e. treating different user
signals separately, the same holds for the detector. Numeri-
cal experiments indicate good detection performance: the
detection scheme works well also at low SNR:s where the
estimator lose performance.
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