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ABSTRACT Finally, we describe an example of application to radar target rec-

The problem of detection of multiple complex sinusoidals, with ognition, where this method should be very beneficial.

uncertain parameters, is addressed in this paper. It is shown that

uncertainties in amplitude and small uncertainties in frequency

can be handled analytically, while unknown phases must be han- 2. MODEL FORMULATION

dled numerically. Robust detectors for some or all of the uncer-To establish notation we first state the likelihood for an exact
tainties are formulated. Performance in noise, and robustness argodel. Then in following subsections we develop the likelihood
evaluated through simulations. Finally the applicability of the de- for different kinds of uncertainties.

tectors for the problem of radar target recognition is discussed,

and some results are presented.
2.1. Exact Model

1. INTRODUCTION The matrix form of a cisoid model in Gaussian noise is:

Multiple complex sinusoidal, or cisoid, models are common in , — s(w,a@+n=MAY+n nOCN(O,R) 1)
signal processing. Estimation methods for such models are abun-

dant and well known (see e.g. [1] and references therein). In thisvhere x=[x(1) ... x(N)] is the observed signab=[w, ...wL]Tthe
paper we study detection, i.e. the decision of which of a numberfrequencies, a=fa... a]" the amplitudes ang=[q, ... ¢ ] the
of models that best describe the observed data. Optimal detectiophases of the model. R is the covariance matrix for n, and
is based on the probability of the data for the considered models,

in the binary case through the classical likelihood ratio test. Eval- = T i (N —1)0
uation of the likelihood of the data for a given cisoid model is ™ ~ [ml m,_] My = [1 e '...e L}
straight forward. The problem is that this simple approach can not ) ) oqT

be used for applications that have models with uncertain parame? = Diag(a) Y= [e“pl... e"&}

ters, as is the case in many practical situations. Unfortunately, in-

tegration of the parameterized likelihood over the prior We can then state the likelihood of observing x:
probabilities for the uncertain parameters, “marginalization”, is

not analytically tractable in the general case. Approximate solu- p(x|w,a,¢) = 1 |R~ €

tions must be found. In the present work two kinds of approxima- H_ 1

tions are employed: Firstly, small uncertainties are linearized andH = (X—MA ) R “(x-MA ) 2
a Gaussian prior assumed, then the integral can be solved analyti- H . L .
cally. Secondly, the integral may be approximated by the maxi-WEege denotes conjugate transpose. When the noise is white,
mum of the integrand. Detection using this approach is usuaIIyR_cr l, then

referred to as a generalized likelihood ratio test (GLRT). We use

this method to handle the phase uncertainty, and show that a Newgl = —Z(XHX+ LIJHAGAL]J—ZRe[LpHAM Hx])

ton search algorithm can be used to effectively find the maximum. o

N‘ -1H

H
In the following sections we derive the likelihood functions for G =M 'M (3)

models with different kinds of uncertainties. The detection per- where we have introduced the matrix G. When the cisoids have

formance for some simple cases are studied through simulations. . -
P 9 well separated frequenciessQN |, and the likelihood can be fac-

tored into a product of the likelihoods of the individual cisoids.
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2.2. Phase Uncertainty substitute R in the previous subsections with a covariance T

formed like:
In order to extend the model in the previous subsection to the

case were the phases are unknown, we have to evaluate: T=R+M=M" (10)

p(x|w,a) =J’p(><\w,a<p)p(<p)d<p (4) .
2.4. Frequency and Phase Uncertainties

For small cisoid frequency errors, we can use a linearized mod-
MOy, el

for p(p)=1/2rt. We have

p(x|w,a) = (2n) J’e
(O8I (1) & 11)
- k

D

u(@ =x"R*x+yHam R MAqJ—zRe[qJHAMHR‘lx] (5)
The functioru(¢) has one minimum ag= @ . Second order ap- U§ing a Gaussian prior farwe replace the signal model in (1)
proximation around that minimum gives: with:

) X = s(w,a¢e)+n =MAY+DMAWe+n

X|w,a) =T \ \_ v e 6

Pxw2) ® N(0,621) nOCN(O,R) (12)

-(<|> OH(e-0) wheree=[g; ...¢ |7, W = Diag(p) and D=Diag(§, i, 2i ... (N-1)i]).
v=(emt de The standard deviation of the frequency mustdye«Tv/2N
R 02 for the approximation (11) to apply. The nuisance parangeter
@=ArgMin p(¢) H= H T can now be integrated over, resulting in:

® 0 .
wo'| . - P

If the integration interval can be extended to the wRdleve p(xiw,a @) =T R RA gt
havev = (2m)~ \H\ . This is applicable if the minimum

H,-1
eigenvalue of H is large enough. Another acceptable approxi-H = (X—MAY) A “(x-MAY)
mation would be to set= 1, its upper bound. The exact value , — R+20 p"'maZmTD 13)
is of mlnor interest since (6) is dominatedibsather tharv. To

find ¢ (and H) we have used a numerical method and the samérhe method from section 2.2. can now be applied, usiingm

approach as in [2], with: (13) instead of R in (8) and (6).
oMl _ . H H Ho-1 ) L.
g - 'm(diaglYww" —wwY) + 2wl AM TR 7X) 2.5. Combined Uncertainties
9=a

2 The final method to handle uncertainties in all the parameters
on | _ =2 Re((WW—I) Y+ Diag(we AM HR~ x)) can now be stated as fqllows: Subst_itute R in (13) by T from
a(pacp (10), and usé\ from (13) instead of R in (8) and (6).

1 ia 1T When the noise is white, R2 |, and after some algebraic ma-

Y= AM"RMA w = [ ! L} ®) nipulations we get:

where “diag” denotes taking the diagonal of a matrix as a vec- (¢) = o +uwvy—2rquAb))
tor, “Diag” denotes making a diagonal matrix from a vector, * H H H
is complex conjugation, andis an component-wise product. 9 = X" x=byby—(b; -G, by) ©(b; -G, I"by)

We use a Newton minimization to fiigd . Some additions are Y = AG,A—AG o[ G,A—A (I - Gy) GG, (1-rGyA
made to handle points where the Hessian is not positive definite

H~H

(in which case we use the steepest decent direction). b = by-Gyl'by—A(I -I'Gy) G, ©(b; —G;I"by)
. L _ 20; 0 20, u O

2.3. Amplitude and Phase Uncertainties ©= ?A%-?A(GZ—GJGNA% A

To handle uncertainties in amplitude we use the following sig- 5 1
nal model instead of (1): M==(Gy=+0"l)

x = s(w, 8 ¢)+n =M8+n BOCN(AY, =) nOCN(O,R) (9) G,=M"M G,=M"DM G,=M"D"DM

= i i i H H
where= is the covariance of the complex amplitudes. Sln_ce_the_ bo=M"x b, =M"Dx (14)
phases are unknown this model can be used for uncertainties in

‘a’ too. It is easy to show, by integration over the nuisance pa-Note that the sufficient statistic for the detection problem is
rameter®, that the likelihood of this model can be found if we [bg,b,].



3. PERFORMACE EVALUATION corresponding to the altered cisoid was set to 0.02.

3.1. Detection Performance NS |
Monte Carlo simulation has been done in order to evaluate de- -0} R - 1
tection performance in a binary case. The first hypothesis con- 4| TR S
sisted of the first two of four identically spaced, unit amplitude, 8 _g,| s il
cisoids; and the second hypothesis of the last two. The spacin@ 100k RN
was 0.7 DFT bins, and 200 realizations was drawn from the first=2,__ :

model with a uniform distribution of phases and additive white S

Gaussian noise at different signal to noise raﬁagfﬂ( ag)/cr2 ). ]
The number of data points was 100. In Figure 1. the probability [ :_ Detecwr23
of detection of the first hypothesis, using a logarithmic detector ™%°[ -~ - Detector25 ||
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Figure 2. Log likelihood when the amplitude of one cisoid is
different from the model.

and zero threshold, are plotted for the different detectors in the 2°° 26 4o
previous section. The frequency uncertainties was set to
o, = 0.2/ N and the amplitude uncertainties- 0.02 |. The de-

tection probability for a pair of well separated cisoids has also
been added as a comparison. (The latter was computed by a

Monte Carlo simulation of the detector obtained from the exact © T
solution of (4).) -20r A
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Figure 1. Detection probability for detecting one pair of
cisoids separated 0.7 DFT bins against another pair also
separated 0.7 DFT bins and 0.7 DFT bin away from the first.  From Figure 2. one can conclude that the estimator in section
2.4. originally designed to handle frequency errors in itself is

We note that the different methods from the previous section“~ _ - >
perform similarly. The performance is nearly as good as it is in qune tolerant to amplitude errors. The combined method in sec-

the case when the cisoids are well separated, even though th&°n 2.5 may find its utility in that it can represent different un-
separation is less then the fourier resolution. certainties for different cisoids.

In Figure 3. one recognizes the anticipated robustness to small
frequency errors for the methods of section 2.4. and 2.5.

3.2. Robustness against uncertainties 4. RADAR APPLICATION

To evaluate the robustness against model uncertainties we comAutomatic target recognition (ATR) based on high range reso-
puted the mean of the log likelihood in a number of Monte Carlo lution (HRR) has for some time been of considerable interest
simulations. One parameter in the model that generated the datg8],[4]. The principle behind this kind of ATR is to identify a
was altered from the model used in the likelihood calculation. target by using its impulse response [3]. This can be measured
The log likelihood was calibrated in such a way that the likeli- directly with a short radar pulse, or equivalently in frequency
hood for the undistorted model corresponds to zero. One hun-domain by using a number of measurements at different fre-
dred realizations was drawn with a uniform distribution of quencies, i.e. sampling the transfer function of the target over a
phases and additive white Gaussian noise at 10 dB signal tavide enough bandwidth. It has been shown that the target trans-
noise ratio. The signal model was two unit amplitude cisoids fer function often can be modelled as a sum of cisoids at typical
separated by 0.7 DFT bins. In Figure 2. the amplitude of one ofradar frequencies, at least over a moderate bandwidth (see [5]
the cisoids was increased various amounts, and in Figure 3. thand references therein). Hence the methods presented in this pa-
frequency of one of the cisoids was altered in such a way thatper can be applied. Although the frequency takes the place of
the separation increased. The frequency uncertainties where sétime”, and wj; is the positions for a number of scattering cent-
to 0.=0.2/N and the amplitude uncertainty in the elemers of ers.



Previously published methods for detection based on HRR datadue to that the “well separated” assumption is invalid. Second-

have not recognized the potential of the scattering centre modelly, we note that our detector from section 2.2. does not general-
The following approaches seems to be prevailing: Firstly, the ize to other aspects as good as the one from section 2.4. This
traditional method seems to be, to use the correlation of “mag-was even more accentuated in tests done with the whole band-
nitude only” range profiles (e.g. [4]). Secondly, many results width.

concerning estimation of scattering centre model parameters

have been reported (e.g. [5],[6]). But, to our knowledge, little

have been reported in the open literature about identification us- 5. DISCUSSION AND CONCLUSIONS

ing these parameters as features. Thirdly, there is a multitude of S o
“ad hoc” methods, including neural networks, that rely on some We have shown how uncertainties in the parameters of cisoid
transformation of data to reduce its dimension, and the availa-
bility of large training sets. It is our belief, that the knowledge

of.? ccc)irrect (rjnodel f01|r thehqlata (thg slca(tjt%rllngl centbelrs), sy b?n the case of small frequency uncertainties it was shown that a
utilized in order to solve this genuinely difficult problem. linearization enabled us to develop a detector with the desired

In the case of well separated scattering centers the likelinoogcharacteristics. The use of a detector with such robustness is es-
can be factored into a product of the likelihoods of individual ci- Sential in practical situations, especially when the model has to
soids, and the integral (4) can be solved analytically. We get abe estimated from reference data.

phase independent detector that is based on the magnitude
MHx. This detector is similar to magnitude correlation in the
time domain, which explains early results of the traditional
method [4]. Although, later work has reported the inadequacy
of using this method on real data [7].

To give an indication of the utility of the detectors we present We have also demonstrated how the detectors can be applied to
an example using predicted RCS data. The data was generaté&e problem of radar target recognition. We feel confident that
from a CAD model of a trainer aircraft by the EPSILON pro- the “measure of match” asked for in [7] can be accomplished in
gram. EPSILON is a commercially available program from this manner.

Roke Manor Research Ltd. (a well known similar program is

XPATCH). Data was generated at 90 frequencies on the radar REFERENCES

X-band over a 625 MHz bandwidth, at 100 different aspects

over a 10 degree range. Data from one aspect (0.9°) was used {d] P. Stoica and R. L. Mosemtroduction to Spectral
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results are presented in Figure 4. where we have normalized the Island Section, 1994.

likelihood in such a way that the maximum over the range of as-[3]
pects for each detector is zero.

models can be handled when constructing detectors for such
models.

QIfhe fundamental characteristic of our detectors is their ability
to handle unknown phases. This is done through a numerical
minimization algorithm. Further work has to be done to make
this algorithm as efficient as possible under various conditions.
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