
ABSTRACT
The problem of detection of multiple complex sinusoidals, with
uncertain parameters, is addressed in this paper. It is shown that
uncertainties in amplitude and small uncertainties in frequency
can be handled analytically, while unknown phases must be han-
dled numerically. Robust detectors for some or all of the uncer-
tainties are formulated. Performance in noise, and robustness are
evaluated through simulations. Finally the applicability of the de-
tectors for the problem of radar target recognition is discussed,
and some results are presented.

1.   INTRODUCTION
Multiple complex sinusoidal, or cisoid, models are common in
signal processing. Estimation methods for such models are abun-
dant and well known (see e.g. [1] and references therein). In this
paper we study detection, i.e. the decision of which of a number
of models that best describe the observed data. Optimal detection
is based on the probability of the data for the considered models,
in the binary case through the classical likelihood ratio test. Eval-
uation of the likelihood of the data for a given cisoid model is
straight forward. The problem is that this simple approach can not
be used for applications that have models with uncertain parame-
ters, as is the case in many practical situations. Unfortunately, in-
tegration of the parameterized likelihood over the prior
probabilities for the uncertain parameters, “marginalization”, is
not analytically tractable in the general case. Approximate solu-
tions must be found. In the present work two kinds of approxima-
tions are employed: Firstly, small uncertainties are linearized and
a Gaussian prior assumed, then the integral can be solved analyti-
cally. Secondly, the integral may be approximated by the maxi-
mum of the integrand. Detection using this approach is usually
referred to as a generalized likelihood ratio test (GLRT). We use
this method to handle the phase uncertainty, and show that a New-
ton search algorithm can be used to effectively find the maximum.

In the following sections we derive the likelihood functions for
models with different kinds of uncertainties. The detection per-
formance for some simple cases are studied through simulations.
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Finally, we describe an example of application to radar target rec-
ognition, where this method should be very beneficial.

2.   MODEL FORMULATION
To establish notation we first state the likelihood for an exact
model. Then in following subsections we develop the likelihood
for different kinds of uncertainties.

2.1.   Exact Model

The matrix form of a cisoid model in Gaussian noise is:

(1)

where x=[x(1) ... x(N)]T is the observed signal,ω=[ω1 ...ωL]T the
frequencies, a=[a1 ... aL]T the amplitudes andφ=[φ1 ... φL]T the
phases of the model. R is the covariance matrix for n, and

We can then state the likelihood of observing x:

(2)

whereH denotes conjugate transpose. When the noise is white,
R=σ2 I, then

(3)

where we have introduced the matrix G. When the cisoids have
well separated frequencies G≈ N I, and the likelihood can be fac-
tored into a product of the likelihoods of the individual cisoids.
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2.2.   Phase Uncertainty
In order to extend the model in the previous subsection to the
case were the phases are unknown, we have to evaluate:

(4)

for p(φk)=1/2π. We have

(5)

The functionµ(φ) has one minimum at . Second order ap-
proximation around that minimum gives:

(6)

(7)

If the integration interval can be extended to the wholeRN we
have . This is applicable if the minimum
eigenvalue of H is large enough. Another acceptable approxi-
mation would be to setν = 1, its upper bound. The exact value
is of minor interest since (6) is dominated byµ rather thanν. To
find  (and H) we have used a numerical method and the same
approach as in [2], with:

(8)

where “diag” denotes taking the diagonal of a matrix as a vec-
tor, “Diag” denotes making a diagonal matrix from a vector, *
is complex conjugation, and• is an component-wise product.

We use a Newton minimization to find . Some additions are
made to handle points where the Hessian is not positive definite
(in which case we use the steepest decent direction).

2.3.   Amplitude and Phase Uncertainties
To handle uncertainties in amplitude we use the following sig-
nal model instead of (1):

(9)

whereΞ is the covariance of the complex amplitudes. Since the
phases are unknown this model can be used for uncertainties in
‘a’ too. It is easy to show, by integration over the nuisance pa-
rameterθ, that the likelihood of this model can be found if we

substitute R in the previous subsections with a covariance T
formed like:

(10)

2.4.   Frequency and Phase Uncertainties
For small cisoid frequency errors, we can use a linearized mod-
el:

(11)

Using a Gaussian prior forε we replace the signal model in (1)
with:

(12)

whereε=[ε1 ...εL]T, Ψ = Diag(ψ) and D=Diag([0, i, 2i ... (N-1)i]).
The standard deviation of the frequency must be
for the approximation (11) to apply. The nuisance parameterε
can now be integrated over, resulting in:

(13)

The method from section 2.2. can now be applied, usingΛ from
(13) instead of R in (8) and (6).

2.5.   Combined Uncertainties
The final method to handle uncertainties in all the parameters
can now be stated as follows: Substitute R in (13) by T from
(10), and useΛ from (13) instead of R in (8) and (6).

When the noise is white, R=σ2 I, and after some algebraic ma-
nipulations we get:

(14)

Note that the sufficient statistic for the detection problem is
[b0,b1].
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3.   PERFORMACE EVALUATION

3.1.   Detection Performance
Monte Carlo simulation has been done in order to evaluate de-
tection performance in a binary case. The first hypothesis con-
sisted of the first two of four identically spaced, unit amplitude,
cisoids; and the second hypothesis of the last two. The spacing
was 0.7 DFT bins, and 200 realizations was drawn from the first
model with a uniform distribution of phases and additive white
Gaussian noise at different signal to noise ratios ( ).
The number of data points was 100. In Figure 1. the probability
of detection of the first hypothesis, using a logarithmic detector
and zero threshold, are plotted for the different detectors in the
previous section. The frequency uncertainties was set to

 and the amplitude uncertaintiesΞ = 0.02 I. The de-
tection probability for a pair of well separated cisoids has also
been added as a comparison. (The latter was computed by a
Monte Carlo simulation of the detector obtained from the exact
solution of (4).)

Figure 1. Detection probability for detecting one pair of
cisoids separated 0.7 DFT bins against another pair also
separated 0.7 DFT bins and 0.7 DFT bin away from the first.

We note that the different methods from the previous section
perform similarly. The performance is nearly as good as it is in
the case when the cisoids are well separated, even though the
separation is less then the fourier resolution.

3.2.   Robustness against uncertainties
To evaluate the robustness against model uncertainties we com-
puted the mean of the log likelihood in a number of Monte Carlo
simulations. One parameter in the model that generated the data
was altered from the model used in the likelihood calculation.
The log likelihood was calibrated in such a way that the likeli-
hood for the undistorted model corresponds to zero. One hun-
dred realizations was drawn with a uniform distribution of
phases and additive white Gaussian noise at 10 dB signal to
noise ratio. The signal model was two unit amplitude cisoids
separated by 0.7 DFT bins. In Figure 2. the amplitude of one of
the cisoids was increased various amounts, and in Figure 3. the
frequency of one of the cisoids was altered in such a way that
the separation increased. The frequency uncertainties where set
to σε=0.2/N and the amplitude uncertainty in the element ofΞ

corresponding to the altered cisoid was set to 0.02.

Figure 2. Log likelihood when the amplitude of one cisoid is
different from the model.

Figure 3. Log likelihood when the frequency of one cisoid is
different from the model.

In Figure 3. one recognizes the anticipated robustness to small
frequency errors for the methods of section 2.4. and 2.5.

From Figure 2. one can conclude that the estimator in section
2.4. originally designed to handle frequency errors in itself is
quite tolerant to amplitude errors. The combined method in sec-
tion 2.5. may find its utility in that it can represent different un-
certainties for different cisoids.

4.   RADAR APPLICATION
Automatic target recognition (ATR) based on high range reso-
lution (HRR) has for some time been of considerable interest
[3],[4]. The principle behind this kind of ATR is to identify a
target by using its impulse response [3]. This can be measured
directly with a short radar pulse, or equivalently in frequency
domain by using a number of measurements at different fre-
quencies, i.e. sampling the transfer function of the target over a
wide enough bandwidth. It has been shown that the target trans-
fer function often can be modelled as a sum of cisoids at typical
radar frequencies, at least over a moderate bandwidth (see [5]
and references therein). Hence the methods presented in this pa-
per can be applied. Although the frequency takes the place of
“time”, andωi is the positions for a number of scattering cent-
ers.
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Previously published methods for detection based on HRR data
have not recognized the potential of the scattering centre model.
The following approaches seems to be prevailing: Firstly, the
traditional method seems to be, to use the correlation of “mag-
nitude only” range profiles (e.g. [4]). Secondly, many results
concerning estimation of scattering centre model parameters
have been reported (e.g. [5],[6]). But, to our knowledge, little
have been reported in the open literature about identification us-
ing these parameters as features. Thirdly, there is a multitude of
“ad hoc” methods, including neural networks, that rely on some
transformation of data to reduce its dimension, and the availa-
bility of large training sets. It is our belief, that the knowledge
of a correct model for the data (the scattering centers), must be
utilized in order to solve this genuinely difficult problem.

In the case of well separated scattering centers the likelihood
can be factored into a product of the likelihoods of individual ci-
soids, and the integral (4) can be solved analytically. We get a
phase independent detector that is based on the magnitude of
MHx. This detector is similar to magnitude correlation in the
time domain, which explains early results of the traditional
method [4]. Although, later work has reported the inadequacy
of using this method on real data [7].

To give an indication of the utility of the detectors we present
an example using predicted RCS data. The data was generated
from a CAD model of a trainer aircraft by the EPSILON pro-
gram. EPSILON is a commercially available program from
Roke Manor Research Ltd. (a well known similar program is
XPATCH). Data was generated at 90 frequencies on the radar
X-band over a 625 MHz bandwidth, at 100 different aspects
over a 10 degree range. Data from one aspect (0.9˚) was used to
estimate a cisoid model of order six using the RELAX algo-
rithm [6]. To simulate measurements, 43 frequency samples
(0.5 m nominal resolution) was used and white Gaussian noise
was added to achieve a SNR of 10 dB. Finally, we computed the
log likelihood for the measured data from different aspects. The
results are presented in Figure 4. where we have normalized the
likelihood in such a way that the maximum over the range of as-
pects for each detector is zero.

Figure 4. Log likelihood of radar data using an order 6
cisoid model.

From Figure 4. we note the poor performance of the detector
based on the assumption of “well separated” cisoids (corre-
sponding to the traditional approach above). This is of course

due to that the “well separated” assumption is invalid. Second-
ly, we note that our detector from section 2.2. does not general-
ize to other aspects as good as the one from section 2.4. This
was even more accentuated in tests done with the whole band-
width.

5.   DISCUSSION AND CONCLUSIONS
We have shown how uncertainties in the parameters of cisoid
models can be handled when constructing detectors for such
models.

In the case of small frequency uncertainties it was shown that a
linearization enabled us to develop a detector with the desired
characteristics. The use of a detector with such robustness is es-
sential in practical situations, especially when the model has to
be estimated from reference data.

The fundamental characteristic of our detectors is their ability
to handle unknown phases. This is done through a numerical
minimization algorithm. Further work has to be done to make
this algorithm as efficient as possible under various conditions.

We have also demonstrated how the detectors can be applied to
the problem of radar target recognition. We feel confident that
the “measure of match” asked for in [7] can be accomplished in
this manner.
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