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ABSTRACT
A user-friendly speech interface in a car cabin is highly needed
for safety reasons. This paper will describe a robust speech
recognition method that can cope with additive noises and
multiplicative distortions. A known additive noise, a source signal
of which is available, might be canceled by NLMS-
VAD(Normalized Least Mean Squares with frame-wise Voice
Activity Detection). On the other hand, an unknown additive
noise, a source signal of which is not available, is suppressed with
CSS(Continuous Spectral Subtraction). Furthermore, various
multiplicative distortions are simultaneously compensated with E-
CMN(Exact Cepstrum Mean Normalization) which is speaker-
dependent/environment-dependent CMN for speech/non-speech.
Evaluation results of the proposed method for car cabin
environments are finally described.

1. INTRODUCTION

The concept of ITS(Intelligent Transport Systems) was proposed
and is promoted in many countries. Drivers, cars, roads and
information network systems are connected with wireless
communication technologies. There must be user-friendly human
machine interface for drivers to have an easy access to various
information of traffic, road construction, dynamic route guidance
for navigation and so forth. The VODIS(Voice Operated Driver’s
Information Systems) project[2] was launched in Europe to
realize a robust speech interface for command and control
applications for car facilities such as a car navigation, a car stereo
and a cellular phone.

There exist both additive noises and multiplicative distortions in
car cabin environments. Table 1 lists the additive noises of four
types. Here, the known additive noise with its source signal
available might be cancelled with an adaptive filter approach like
NLMS(Normalized Least Mean Squares)[3]. On the other hand,
the stationary unknown additive noises can be effectively
suppressed with noise cancellation methods such as SS(Spectral
Subtraction)[4]. Furthermore, the CMN(Cepstrum Mean
Normalization)[5] approach was proposed to compensate
multiplicative distortion of microphone characteristics.

This paper is organized as follows. In Section 2 we separately
discuss three algorithms for robust speech recognition, 1)NLMS-
VAD(NLMS with frame-wise Voice Activity Detection) for
canceling a known additive noise, 2)CSS(Continuous Spectral
Subtraction)[6] for suppressing a stationary unknown additive
noise, and 3)E-CMN(Exact CMN)[1] for compensating a
multiplicative distortion. In Section 3 the combined approach

Table 1. Additive noises in a car cabin.

known unknown

stationary engine etc. road, wind, air-
conditioner etc.

non-
stationary

car stereo speaker out,
navigation guide,
traffic information

guide etc.

bump, wiper, winker,
conversation, noise when
passing a car running to
opposite direction etc.

  

NLMS-VAD/CSS/E-CMN is proposed to realize a robust speech
recognizer in car cabin environments and is evaluated with a
speaker independent large vocabulary word recognition task.
Finally we summarize our proposal and outline our future work.

2. ROBUST SPEECH RECOGNITION
“NLMS-VAD/CSS/E-CMN”

2.1 Modeling Additive Noise and Multiplicative
Distortion in a Car Cabin

The long-term average of short-term spectra S t( ; )ω  of

frequency ω  at time t in a speech frame is called speaker
personality and is defined as

   HPerson(ω) = 1
T ⋅ S(ω;t)Σ

t= 1

T

                                                    (1)

where T is a sufficiently large natural number. The speaker
personality may be considered to represent frequency
characteristics which depend on the speaker’s vocal tract and
vocal cords. The normalized speech spectra is defined as

  )(/);();(* ωωω PersonHtStS = .                                            (2)

The short-time spectra S t( ; )ω  is interpreted as generated

outputs when the normalized speech spectra S t* ( ; )ω  passes

through a time-invariant filter of gain HPerson( )ω  which is a

multiplicative distortion to S t* ( ; )ω . We may find three kinds of

multiplicative distortion for S t* ( ; )ω  in addition to the

HPerson( )ω  in reality[9] as follows;

(1)speaking style HStyle N( ) ( )ω  : frequency characteristics

peculiar to speaking styles(speed, loudness, Lombard effect etc.)
which are affected by an additive noise,



(2)acoustical transmission characteristics HTrans( )ω  : spatial

frequency characteristics from mouth to microphone, and

(3)microphone characteristics HMic( )ω  : frequency

characteristics of microphone.

If we assume that speech and noise are additive in the linear
spectrum domain, the observed spectra O t( ; )ω  is modeled as
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where N t( ; )ω , E t( ; )ω  are an unknown additive noise and a

known one respectively.

2.2 Cancellation of Known Additive Noise

The known additive noises in Table 1 might be cancelled by the
adaptive filter technique. The most typical algorithm NLMS is
used in this paper. The important issue is how to control start and
stop of FIR coefficients update by NLMS. When an speech signal
exists in the adaptive filter input, the update of FIR coefficient
must be stopped. On the other hand, the update should be
continued unless there is the speech signal. The detection of the
speech signal must be accurate. However, there are various
unknown additive noises which make the detection difficult. A
simple end-point detection using signal power does not work well
because it is quite difficult to distinguish the speech signal and the
stationary additive noise. A more robust speech detection method
is highly required. In this paper, we use the frame-wise VAD
algorithm[7] which is standardized for GSM cellular phones. This
algorithm is capable of adapting to varying background additive
noise level. However, it was observed that the detection
performance at low SNR below 10dB is poor. So, we modified
the algorithm so that it is capable of detecting speech interval at
lower SNR. The adaptive filter enhanced with the frame-wise
VAD is called NLMS-VAD(NLMS with frame-wise VAD). The
block diagram of NLMS-VAD is shown in Fig.1(a), where [s], [f]
indicate sample-wise, frame-wise operations respectively. The
cancelled signal is fed into the VAD in which speech/non-speech
detection is carried in frame-wise fashion. If non-speech is
detected, the estimated FIR coefficients h t( )+ 1  is saved in filter

buffer. Otherwise, h t( )+ 1  is replaced by the FIR coefficients

saved in the filter buffer in order to prevent them from being
deteriorated due to a delay of frame-wise VAD operation.
Fig.1(b) shows a spectrogram of microphone input of Japanese
word “akarui”(0.28-0.9 sec.) uttered in a running car cabin with a
car stereo playing a music. Fig.1(c) shows spectrogram of the
output of NLMS-VAD, which is obtained from a microphone
input. It is observed that the acoustic reverberations which are
indicated with black circles in Fig.1(b) are effectively suppressed
by NLMS-VAD. The maximum  and average of ERLE(Echo
Return Loss Enhancement) for this test data are 9.3dB and 4.5dB
respectively. The result of VAD is shown in Fig.1(d) which
suggests that the VAD works reliably.

(a)block diagram of NLMS-VAD

(b)Input to NLMS-VAD

(c)Output from NLMS-VAD

(d)VAD decision

Fig.1 NLMS-VAD

2.3 Suppression of Unknown Additive Noise

The most typical approach of canceling stationary unknown
additive noise is SS. On the other hand, MMSE has been studied
as a promising noise cancellation technique for a hands-free
cellular phone[10]. Recently, a advantage of CSS over SS and
MMSE was reported[11]. The CSS is formulated as follows;
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An estimated value of additive noise );(
~

tN ω  is continuously

updated in every frames regardless of VAD result in CSS on the
contrary to SS. Then, an estimated spectra );(ˆ tS ω  is calculated.

Because speech spectra affect );(
~

tN ω  estimation, there is a

problem that week spectral components following strong spectral
components are masked out. It leads to distortion of speech
spectra.



    (a.1)NO[clean]       (b.1)SS[clean]       (c.1)CSS[clean]       (d.1)MMSE[clean]

   (a.2)NO[10dB]       (b.2)SS[10dB]       (c.2)CSS[10dB]     (d.2)MMSE[10dB]

Fig.2: Effect of speech enhancement techniques(horizontal axis :
sec., vertical axis: frequency).

Spectrograms for word “ai” uttered by a Japanese female are
shown in Fig.2, where clean speech and noisy speech(10dB SNR
with car noise) are processed with no processing(NO), SS, CSS
and MMSE.

We define a variability measure of MFCC(Mel-Frequency
Cepstrum Coefficient)s between SNR1 and SNR2 as
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where )(ncSNR
i

 denotes i-th MFCC in frame n at SNR. N and I

are a number of frames and an order of MFCC vector respectively.
Fig.3 shows variability measures dB

yVariabilitD 20,∞ , dB
yVariabilitD 10,∞  for SS,

CSS and MMSE, calculated from 10 order MFCC vector in
speech frames of 65 words of 4 speakers. The symbol ∞  means
clean data. 20dB and 10dB mean that car noise is added to the
clean data at SNR 20dB and 10dB respectively. Fig.3 shows the
variability measure for CSS is lower than those for SS and MMSE.
It suggests CSS gives more similar MFCC vectors in a wide range
of SNR. We can observe this robust property of CSS by
comparing spectrograms of Fig.2 (c.1) and (c.2). On the other
hand, speech spectral distortion by CSS is noticeable by
comparing Fig.2 (a.1) with (c.1).

We compare the performances of SS, CSS and MMSE with
speaker independent Japanese 65 words recognition task. A
whole word HMM, which has two states per phoneme, is trained
from training data for each word. Each state has one Gaussian
distribution with diagonal covariance. Acoustic analysis is done
with 8kHz sampling, 32ms frame length, 20ms frame shift. 10
MFCCs are used as acoustic parameters. Car noise is added to
both training data of 36 speakers and test data of 4 speakers with
the same SNR. The training data and the test data are noise-
cancelled by the same speech enhancement technique. The
average word recognition rates are shown in Table 2. We can
summarize two properties of the CSS here.

(property-1)CSS gives higher performance than SS and MMSE at
lower SNR due to low value of variability measure.

Fig.3: Variability measure of MFCC.

Table 2: Average word recognition rates.

SNR 20dB 10dB

NO 91.9% 84.6%

SS 96.5% 89.6%

CSS 95.4% 93.8%

MMSE 96.9% 91.9%

(property-2)CSS has slightly worse performance than SS and
MMSE at higher SNR due to inevitable spectral distortion.

2.4 Suppression of Unknown Additive Noise

We proposed the E-CMN algorithm which is capable of
compensating various kinds of multiplicative distortion
collectively by normalizing input spectra[1]. The algorithm is
described as follows;

(Estimation Step) : Two cepstrum mean vectors are calculated.
One, obtained from speech frames of sufficiently-long utterance,
is speaker-dependent. The other, obtained from non-speech
frames, is environment-dependent.

(Normalization Step) : The speaker-dependent cepstrum mean
vector for speech is subtracted from the input cepstrum vector in
speech frames. The environment-dependent cepstrum mean vector
for non-speech is subtracted from the input cepstrum vector in
non-speech frames.

This E-CMN is compared with a conventional CMN[5]. The
recognition task is speaker-independent 520 Japanese words using
54 context-independent tied-mixture HMMs which are trained
from clean speech. The acoustic analysis uses 8kHz sampling,
32ms frame length and 20ms frame shift. The parameters are 10
MFCC(Mel-Frequency Cepstrum Coefficient)s, 10 Delta MFCCs
and Delta energy. The number of shared Gaussian distributions
are 256, 256 and 64 respectively. One measured impulse response
from a mouth of dummy head equipped in a driver’s seat to omni-
directional microphone mounted on driver’s sun-visor,
HTrans( )ω , is convoluted with evaluation data. No additive noise

is added to the evaluation data. The speech/non-speech decision is
done by the same VAD mentioned above. 10 words are used to
calculate speaker/environment-dependent cepstrum means by
(Estimation Step). Word accuracy for no processing, the
conventional CMN and E-CMN applied to both HMM training
data and evaluation data are 80.1%, 90.8% and 93.3%
respectively. It is suggested that E-CMN enables a simultaneous
compensation of four kinds of multiplicative distortions described



in subsection 2.1 by operating as an equalizer in frequency
domain[1].

2.5 NLMS-VAD/CSS/E-CMN

We propose the combination of NLMS-VAD, CSS and E-CMN.
A microphone input is processed with NLMS-VAD to cancel a
known additive noise. A mixed signal of left and right channel
sources of car stereo system is given as a reference(far-end in) of
NLMS-VAD. Secondly, the output of NLMS-VAD is noise-
suppressed with CSS. Finally, spectra obtained after CSS is
converted to cepstrum domain parameter which is equalized with
E-CMN.  The VAD result in NLMS-VAD is reused for E-CMN.

3. EVALUATION

3.1 Recognition Task

The recognition task is speaker independent 520 Japanese words
with 54 context-independent tied-mixture HMMs. A clean speech
is added with a car noise with SNR 10dB and used as a training
data for the HMMs after enhanced by CSS and E-CMN. The
acoustic analysis condition, acoustic parameters and number of
shared Gaussians are the same as those mentioned in subsection
2.4. The known acoustic reverberation and the unknown car noise
were recorded in a car cabin in idling, running at 60kmph on city
road and running at 100kmph on express way. During the
recording, 5 music sources(pops, jazz, rock, classic and
rakugo(narration of Japanese comical tale)) were played by a car
stereo. These mixed additive noises are added to a clean speech
convoluted with the same impulse response in subsection 2.4.

3.2 Performance Analysis

Averages of word recognition rates for 5 music sources at idling,
60kmph and 100kmph are shown in Fig.4. Three cases, case
1:w/o Speaker Out, case 2:w/ Speaker Out & w/o NLMS-VAD,
case 3:w/ Speaker Out & w/ NLMS-VAD, are compared. A
recognition rate for the case without any additive noises is 80.0%.
RRE(Recovery Rate of Error) is defined as

 { } { }[ ] 100)2()1()2()3( ×−− casercasercasercaser    (10)

where )( xcaser  represents average word recognition rate for

case x. We get the RREs over 80% for all driving conditions.
Table 3 shows word recognition rates in case 3 for each music
source. Although there exist some fluctuations of recognition
rates, rather stable performance for any music is realized. We
observe that some residual music reverberation after NLMS-VAD
might be masked out by (property-1) of CSS.

4. SUMMARY

This paper proposed the NLMS-VAD/CSS/E-CMN which is
robust to existence of a known additive noise, a stationary
unknown additive noise and a multiplicative distortion in adverse
car environments. One of future research goals is to study how to
cope with non-stationary additive noises such as conversational
speech in a car cabin, a noise of bump, a noise generated in
passing a car running to opposite direction and so forth.

Fig.4: Average ord recognition rate.

Table 3: Word recognition rate for each music source.

idling 60kmph 100kmph

pops 72.4% 57.1% 53.2%

rock 73.2% 59.2% 49.3%

jazz 73.9% 55.8% 50.8%

classic 72.9% 57.1% 54.2%

rakugo 73.7% 58.5% 54.1%
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