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ABSTRACT

In this work we show that orthogonal expansions of recurrent sig-
nals like electrocardiograms with a reduced number of coefficients
can be considered as a periodic time-variant filter. Instantaneous
impulse and frequency responses are analyzed for two cases: esti-
mation of the coefficients with inner product and adaptive estima-
tion with LMS algorithm.

1. INTRODUCTION

Orthogonal expansion is a very well-known technique for signal
analysis. It is based on the decomposition of the signal in a linear
combination of simple and elementary functions [1]. An appro-
priate choice of the orthogonal functions achieves a signal repre-
sentation where each coefficient contributes with independent and
complementary information. For example, frequency components
of the Fourier transform, instantaneous signal values for identity
transform, localized frequency components using wavelet trans-
form, etc.

Orthogonal functions that achieve a good energy concentra-
tion are especially useful when analyzing a reduced number of co-
efficients in several applications: data compression [5], parameter
extraction for pattern recognition, monitoring [4], etc..

In this work we show that the effect of using a reduced number
of coefficients in orthogonal expansions of recurrent signals, like
electrocardiograms (ECG), can be described as a periodic time-
variant filter. We analyze two different ways for estimating the
coefficients: inner product and adaptive estimation with the LMS
algorithm. Both methods are analyzed with time and frequency
domain responses.

2. INNER PRODUCT

Inner product (IP) is the most common way for estimating the or-
thogonal expansion coefficients of signals with high values of sig-
nal to noise ratio. IP is the solution to the problem of minimizing
the mean square error between the original signal and a reduced
linear combination of basis functions. When allN basis functions
of the signal space are used in the expansion, the signal energy is
completely represented, and the system can be considered as the
identity function. When the number of functions is reduced to a
fractionp <N , some signal components are discarded. This be-
havior can be seen as applying a filter to the signal.
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The inputx[n] outputy[n] equation of the IP estimation sys-
tem with a reduced number of coefficientsp < N for the k-th
occurrence of a recurrent signalx[n] can be written as

y[(k � 1)N + n] =

p�1X
i=0

c
k�1
i
e�i[n]; 0<n<N�1 (1)

wheree�i[n] is the periodic extension of each basis function�i[n]
andck�1i are the coefficients of the inner product of the signal from
the previous occurrence (applying causality to the filter)

ci =

N�1X
m=0

e�i[m]x[(k � 2)N +m]; 0<i <p�1 : (2)

The input-output equation is obtained by substituting (2) in (1)

y[(k�1)N+n]=

N�1X
m=0

x[(k�2)N+m] r[m;n]; 0<n<N�1

(3)
wherer[m;n] =

Pp�1

i=0
e�i[m]e�i[n]= e�T [m]e�[n] and e�[n] is

the vector of basis functions at timen. The output at instantn
can be seen as a linear combination of input samples from the last
occurrence (N samples delay) with time-varying values of the basis
functions; that is, IP can be described as a time-variant filter, but
periodic becauser[m;n] = r[m+N;n] = r[m;n+N ]. In order
to find the instantaneous impulse responses, (3) can be written as
a linear convolution

y[(k�1)N + n] =

1X
m=�1

x[m]h[n �m;n] (4)

of the input signalx[n] with the N finite duration impulse re-
sponsesfh[m;n]; n = 0; 1; : : : ; N�1g

h[m; n]=

�
r[n�m+N; n] m=n+1; n+2; : : : ; n+N

0 elsewhere
:

(5)
In order to quantify this filtering effect, impulse and frequency

responses are studied depending on the number of functionsp. The
optimal Karhunen-Lo`eve (KL) transform [7] of ECG signals is
used as an example, but other orthogonal expansions can be con-
sidered without loss of generality. The basis functions are esti-
mated from a training set of ECG signals of MIT-BIH Arrythmia
and ESC-STT databases (resampled to 360 Hz). In Figure 1 im-
pulse responsesh[m;n] are shown for several values ofn within
each occurrence whenp=30 functions are used in the expansion.



The impulse responses are finite with durationN=430 samples
(heartbeat length).
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Figure 1:Impulse responses for IP with p=30 KL functions at dif-
ferent times n.

If we apply the Fourier transform to every impulse response
fh[m; n]; n=0; 1; :::; N�1g we get the instantaneous frequency
responses shown in Figure 2, that are located with respect to a typ-
ical normal heartbeat (at top left). Frequency responses are low
pass, but with a time-varying response. For ST segment, P and
T waves the cut-off frequency is lower than for QRS complex.
This behavior is in accordance to the frequency content of each
waveform of the ECG signal [6]. We can conclude that the KL
orthogonal expansion with IP usingp=30 basis functions can rep-
resent these frequency components at every timen. This is related
to the fact that the KL transform is hand-made from a training set
of signals and its first basis functions represent the main signal-
morphology.
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Figure 2: Frequency responses for IP with p=30 KL functions at
different times n.

Power-line interference of 50 Hz (Europe) and 60 Hz (USA)
can be seen in Figure 2 because the signals from the training set
were contaminated with these components.

The Fourier transform of the output signaly[n] of the k-th
occurrence can be related to the input as

Y (ej!) =

N�1X
n=0

N�1X
m=0

x[(k � 2)N +m] r[m;n] e�j!n

=

N�1X
m=0

x[(k � 2)N +m]R(m;e
j!) (6)

that is, Y (ej!) is a linear combination of frequency responses
where the weights are the input samples and the frequency re-
sponsesR(m; ej!) =

PN�1

n=0
r[m;n]e�j!n depend on the basis

functions used in the expansion. It can be easily demonstrated that
R(m; ej!) = e�j!(N+m)H�(ej!;m) sincer[m;n] = r[n;m].
The global frequency response of the system can be easily obtained
as

HG(e
j!) =

Y (ej!)

X(ej!)
=

P
m
x[m]R(m;ej!)

X(ej!)
: (7)

The filtering effect of the system when the input is misaligned
a samples with respect to the basis functions can be studied from
(7). In this case, the transfer function will be

HG(e
j!
; a) =

Y (ej!)

X(ej!)
=

P
m
x[m� a]R(m;ej!)

X(ej!)
: (8)

We show in Figure 3 the distortion introduced in the signal
when a misalignment of 52 ms is introduced to a normal heartbeat
(record 100 from MIT-BIH database) andp=30 KL basis functions
are used. It can be seen that the frequency distortion is higher for
misaligned beats than for aligned beats.
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Figure 3: Frequency distortion due to misaligned signals (left:
aligned normal heartbeat; right: 52 ms misaligned heartbeat).

So, we can conclude that the description of IP as a linear
periodic time-variant filter gives a relationship between the in-
put signal at different time instants (around P wave, QRS com-
plex, T wave) with time-variant transfer functions corresponding
to those time instants. Also, it allows to interpret the effect of mis-
alignment of the input signalx[n] with respect to the basis func-
tions as a distortion filter.

Other orthogonal transforms whose basis functions have only
one frequency component like the Discrete Cosine Transform are
not as well suited as KL functions, because the ECG signal has
different frequency components at different times within a heart-
beat.

3. LMS ALGORITHM

When the input signal is corrupted with uncorrelated noise, adap-
tive techniques [4, 8] are often used for estimating the orthogonal
expansion coefficients. The reference inputs to the adaptive linear
combiner shown in Figure 4 are the periodic extension of the basis
functionse�i[n] (deterministic and orthogonal) in contrast to clas-
sical situations where random signals are used as reference inputs.
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Figure 4:Adaptive linear combiner for coefficient estimation.

Several authors have studied the behavior of this system, show-
ing that in the most general case it can be described with a linear
time-varying difference equation [2]. Updating the coefficients of
the system withW[n+1]=W[n]+2� e[n]e�[n] iteratively wheree�[n] is the vector with basis functions values at timen andW[n]
is the coefficient vector at timen, and assuming that the weight
vector is initialized to the null vector, it is easy to write the differ-
ence equation

y[n] = 2 �

n�1X
m=0

e[m] (e�T [m] e�[n]) (9)

that can be re-written as

y[n]=2�

n�1X
m=0

x[m] r[m;n]� 2�

n�1X
m=0

y[m] r[m;n] : (10)

This difference equation is recursive, with time increasing or-
der and time-variant coefficientsr[m;n] = e�T [m]e�[n], but with
periodic behavior. When all basis functions are used in the expan-
sionp=N , the inner productsr[m;n] are different from zero only
whenm�n= kN . In this particular case, the estimation system
can be described as a linear time-invariant filter, equivalent to a
exponential averager with transfer function [2, 3]

Y (z) =
2� z�N

1 + (2�� 1) z�N
: (11)

But many applications require a reduced number of functions, such
as data compression, parameter extraction for pattern recognition,
monitoring, etc.. However, to the best knowledge of the authors,
the analysis for a reduced number of coefficients has not been ad-
dressed yet.

The recursive equation (10) is difficult to solve directly in or-
der to find the impulse responses that have infinite length because
of the recursivity. However, the outputs when the input signals are
impulse functions�[n�m] can be obtained easily running the fil-
ter with this input. Letr[m;n]=r[m+kN;n+kN ] be the output
at instantn when the input impulse was located at samplem. The
impulse responses of the systemfh[m; n]; n = 0; 1; : : : ; N � 1g
can be written ash[m;n] = r[n�m;n] = h[m;n+kN ]. Dif-
ferent impulse responses of the adaptive system of Figure 4 using
p=30 KL functions and a value of�=0.3 at several timesn, are
shown in Figure 5. Some differences can be appreciated with re-
spect to the case when all basis functionsp=N are used (impulse
train with decreasing exponential factor depending on�).

Applying the Fourier transform to each of the impulse responses
we get the instantaneous frequency responses. In Figure 6 a fre-
quency response corresponding ton=250 ms and�=0.3 is shown.
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Figure 5:Impulse responses for LMS�=0:3 with p=30 KL func-
tions at different times n.

The envelope of the frequency responses are very similar (but not
identical) to the IP (compare Figure 6 with Figure 2), but fre-
quency responses for LMS are comb filters, so uncorrelated noise
(non repetitive components with respect to the heartbeat occur-
rence time) will be attenuated. This behavior is true for frequencies
where the envelope of the IP frequency response is larger than the
minimum of adaptive filter lobes, in this case up to around 70 Hz.
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Figure 6: Frequency responses for LMS� = 0:3 with p=50 KL
functions at time n=250 ms.

If smaller values of� are used, the lobes of the frequency re-
sponse are narrower and closer to the ideal comb filter. To increase
this effect smaller values of� can be selected, increasing the con-
vergence time of the algorithm. This effect is illustrated in Figure 7
where two different values of� (0.3 and 0.05) are used.

0 2 4 6 8 10
0

0.5

1

1.5

Frec (Hz)

|H
(e

jω
 )
|

IP          
LMS µ=0.3 
LMS µ=0.05

55 60 65 70 75
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Frec (Hz)

|H
(e

jω
 )
|

IP          
LMS µ=0.3 
LMS µ=0.05

Figure 7:Low and high details of frequency response at j=250 ms
for IP and LMS with� = 0:3; 0:05 and p=30 KL functions.

In summary, the adaptive estimation system with LMS and
p < N can be described as a linear time-variant periodic filter
that can be analyzed by means of instantaneous impulse responses
fh[m; n]; n= 0; � � � ; N�1g in a similar way than for IP. The de-
scription of the adaptive estimation of orthogonal expansion coef-



ficients using the LMS algorithm is a new way to explain the well-
known trade-off for selecting the value of the step factor� (conver-
gence time and misadjustment reflected in the degradation of the
instantaneous frequency responses). Also it explains the combi-
nation of both filtering effects: comb filtering due to the adaptive
estimation, and low-pass filtering due to the reduced number of
functions used in the expansion.

This system can be used to design time-variant filters. From
the desired frequency responses (and the envelope of them for
LMS case) we would obtain the basis functionse�[n].

4. APPLICATIONS

4.1. ECG data compression

Data compression is one of the most evident applications where the
reduced number of functions in orthogonal expansions is a key fac-
tor. With the shown description of orthogonal expansion of recur-
rent signals as a linear time-varying periodic filter we can predict
quantitatively which frequency components are well represented
at every recurrence time. For example, Figures 2 and 6 illustrate
thatp=30 KL functions can represent the main frequency compo-
nents of a heartbeat. Moreover, this description can be a useful
tool for testing and comparing behaviors of different orthogonal
transforms with variable number of functions.

4.2. Ischemia analysis with the KL transform

Myocardial ischemia is caused by a lack of oxygen over a cardiac
area and is reflected on the ECG signal as a low frequency devia-
tions of the ST segment. The Karhunen-Lo`eve has been recently
applied to the ST-T complex as a tool for isquemia monitoring [4]
showing that is more sensitive than classical local measurements:
ST level, position and amplitude of T wave. Using very few KL
basis functions it is possible to recover most of the energy of the
ST-T complex. Applying the orthogonal expansions description as
a linear time-variant filter, we can study the number of basis func-
tions needed for representing the very low frequency components
of the ST-T complex.
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Figure 8: Frequency responses applying IP with 2, 3 and 4 KL
functions for the ST-T complex at n=85 ms after QRS.

It can be seen from Figure 8 that using only two KL functions
the very low frequencies at timen=85 ms after QRS complex are
attenuated. Using three or four basis functions improves the repre-
sentation of the very low frequencies.

5. CONCLUSIONS

In this work two different approaches (inner product and adaptive
estimation with the LMS algorithm) are analyzed for estimating
the coefficients of orthogonal expansions using a reduced number
of functions. We show that both estimation systems are equivalent
to a time-variant periodic filter. Inner product has finite impulse
responses with duration N samples (length of a occurrence signal),
while impulse responses of the LMS are infinite because of the re-
cursive nature of the LMS algorithm. Both systems have the same
frequency response envelopes, producing a similar low-pass time
varying filtering effect, but with the difference that adaptive fre-
quency responses have comb shape, so they attenuate uncorrelated
noise (non-periodic with hearbeat occurrence time).

Using the time-variant periodic filter description of orthogo-
nal expansions shown in this work we can quantitatively know
which frequency components and at what time location of recur-
rent signals are well represented using a reduced number of func-
tions. Therefore it is a useful criteria for determining the number
of functions. Applications can be in data compression, parameter
extraction for pattern recognition, detection and monitoring, time-
variant filter design, etc.. Results are shown for the Karhunen-
Loève transform, but can be applied to any orthogonal transform
without loss of generality.
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