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ABSTRACT It has been successfully used for the design of FIR digital

In this paper, we consider a class of FIR filters defined by filters, see e.g. [2], [3]. This type of technique is, how-
the first order difference routing digital filter (DRDF) struc- €Ver, notorious in its computational requirement for prob-
ture and sums of two powers—of—two coefficients. A novel 1€ms with large filter lengths. Unless a very good lower
design method is developed for constructing high quality bound is available together with other useful forcing and
filters with reference to the min-max error criterion. This Pruning rules, this method is only applicable for small size
method is highly efficient in terms of computational time. ~ filter design problems.

Simulation studies show a large improvement over ex- [N this paper, we consider a specific FIR filter structure
isting methods such as quantization [6]. In some cases, théased on sums of two powers—of-two FIR coefficients and
peak ripple magnitude over the stop and pass bands is re2 digital integrator. This FIR—integrator structure is partic-
duced up to 13 dB over the quantization method. Theseularly well suited for low—pass filters with some degree of

results are achieved even for cases involving small numberoversampling. It is attractive for hardware implementations
of delays. due to its simplicity, stability and cost—effectiveness. This

filter structure was proposed in [6] for the DRDF structure
which is basically a hardware structure for serial implemen-
tation. However, the structure is applicable to a much wider
class of implementations, such as with parallel arithmetic,
etc. To ensure that the FIR-integrator filter is of linear
phase, a simple symmetry constraint is imposed.

1. INTRODUCTION

Most of the research on digital filter design has been con-
cerned with problems related to general purpose digital sig-
nal processors. This includes finite word length effects,

tradeoffs between filter—length and word—length [1] and de- 1 he contribution of this paper is a novel computational
sign by discrete optimization methods [2]. method based on the branch and bound technique in con-

In recent years, attention has also been given to prob_junction with an optimized quantization procedure for solv-

lems related to actual hardware implementation issues. Fil-Nd the linear integer programming problem.
ters with sums of two powers—of—two coefficients are of par-
ticular significance. For such a filter, multiplication is con- 2 FIRST ORDER DRDF WITH LINEAR PHASE
verted into simple operations involving shift and add, (see
e.g. [3], [4] for more details), and hence the hardware im- The FIR—integrator filter structure is given in Fig. 1. The
plementations become simple with low costs. (n)
The most commonly used criteria in filter designs are
the weighted least squares and the weighted min—max [3].
For Finite Impulse Response (FIR) filters with infinite pre- d(O
cision coefficients, these optimization problems can be effi-
ciently solved by using appropriate optimization techniques
such as least squares approximation methods, linear pro-
gramming methods and the Remez exchange algorithm [5].
However, for filter designs with discrete coefficients, the Figure 1: FIR filter structure based on sum of two powers—
corresponding integer programming problems are combina-0f—two coefficientsi(rn) and a digital integrator.
toric optimization problems and hence are much more diffi-
cult to solve than their infinite precision counterparts. filter consists of a transversal filter with tap—weigti{s)
The branch and bound technique is perhaps the mosiat everyr seconds and cascaded with a first order digital
well-known and straightforward integer programming methouhtegrator. The overall impulse resporis@:) is given by




the difference relation Letd = [d(1) ---d(M)]* be aM x 1 vector containing
the transversal filter coefficients and Bidenote a\/ x M
h(n) = h(n 1) +d(n) (1) lower triangular matrix of all ones. The FIR filter coeffi-

. . cients is then given b = Td and the real amplitude re-
whered(n) are the DRDF coefficients. It is assumed that sponse is g h P

h(n) = d(n) = 0forn < 0 andn > L whereL denotes A(F) = Trd 7
the filter length. The transversal filter coefficiedts.) are () = o(f) 0
expressed as the sum or difference of two powers—of—two
terms [3]. Thusd(n) € A, where A4, = {Ele Si29i}

and0 < g; < b<1. The value ob is the maximum shiftin -~ The filter design problem is to find a coefficient vectbr

3. PROBLEM FORMULATION AND SOLUTION

bits, or “shift-range” and; takes one of the valuds0, <. satisfying the feasibility constraint
There are generally four cases for the design of linear—
phase FIR filters. Without loss of generality, we will only |A(f) ©Aq()| <e(f) (8)

consider the case whefleis odd and the coefficients(n) . _ _
are symmetric. Other cases can be reformulated in a similatwhere A;(f) is the real amplitude of the desired response,

manner. e(f) is the specified (strictly positive) design tolerance and
It follows from (1) that a necessary and sufficient condi- f belongs to the intervd, .5].
tion for h(n) to be a FIR filter is that the tap—weightén) For the infinite precision solution, a feasible solution to
satisfy the condition (8) (if any), can be found by solving the min—max problem
= min - max v(f)|A(f) < Aa(f)| )
h(L&l1) = Z d(k) = 0. 2) deRM felo,.5]
k=0

wherev(f) = 1/e(f). The design specification (8) has a
This condition also ensures that the transfer function feasible solution iff the optimum objective value in (9) is
D(z) (the Z—transform ofd(n)) has a zero at unity, thus less than or equal to one.

the corresponding pole of the integrator is cancelled. To obtain a quality filter with discrete coefficients, a
Next, we impose the linear phase constraint to the first scaling factor is included in the design procedure. The new
order DRDF, considered in [6] mixed integer programming problem is to obtain a set of co-
efficientsd(n) € A, and the scaling factar such that the
h(n) = h(L &1 sn) (3)  following feasibility conditions are satisfied.
Initially, for n = 0 and by (2) we havé(0) = h(L 1) & I6A(f) ©Aq(f)| < e(f)
d(0) = h(0) = 0. Using induction with respect to, it can { 0 <6 <dmae, (10)

be shown that (3) holds iff the tap—weighls:) satisfy the

following anti—symmetry condition whered, ... Is the maximum value of. Note that (10) has

M discrete variables and one continuous variable
d(n) = <d(L <n) (4) Let h, denote the infinite precision solution to the in-
teger programming problem. The design by quantization
for all n. The frequency respongé( f) of the linear—phase  starts by fixing the value af as

FIR filter h(n) can be written as
|ho(n) &ho(n 1)

L1 . . - 6=04= 13%\4 o (11)
H(f) = hn)e™ 7T = =207 A(f) - (5)
n=0 followed by a recursive quatization procedure to obtain the

discrete coefficients [6] (cfé—modulation). Let)(z) de-
note a non—uniform quantizer defined for all For |z| <
2%, the quantized valu€(z) is determined by rounding
to the closest value inl;, and for|z| > 2° the quantizer is
saturated at level§ (z) = £2°.

whereA(f) is the real amplitude response, cf. [5].
For filters with odd lengttL, the real amplitude is given
by A(f) = ¢(f)"h, where

1 2 2 M&1
h(_ ) cos( WfT( eb) The quantized solutioh, is then calculated according
h = : ando(f) = : to the following recursion:
h(M 1) 2cos(2n fT)
h(M) 1 e Initial value:
(6)

andM = (L &1)/2. hqe(1) = dg(1) = Q(ho(1)/d,) (12)



e Repeatfomn =2,...,M and impose the following inequality constraint fdén) €

dy(n) = Q(ho(n)/dy &hy(n 1)) (13) b—1 b—1
he(n &1) + d,(n) (14) D wiln) + 3 yi(n) <2 (19)

>
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An optimal quantized solution is obtained as follows. This mixed zeros—ones integer programming problem can,
We observe that for quantization, the scaling valueon- in principle, be solved by many MILP software packages
tains the most crucial information. The main idea of this such as CPLEX to obtain the global solution. The real-
step is to obtain an optimum quantized solution by search-ity is, however, the exponential increase in the computa-
ing for the best value aof. The maximum ripple in the pass tional requirement when the number of filter coefficients is
and stop bands is plotted as a functioofThe best value  increased.

d,1 with the corresponding coefficiends; andh,; are cho- In this paper, we introduce an efficient optimization method,
sen. This procedure can be done very fast (using e.g. Mat-based on the above ideas combined with the branch and
lab) and the best solution has much smaller maximum ripplebound technique to get a further improvement of the optimal

in both pass and stop bands when compared to the quantizeduantized solution by searching around its neighbourhood.

solution. Foreachvalueof,1 <n < M, letd;(n) andd,(n) €
To overcome the non-linear formulation in (10), divide 4, denote the greatest lower bound and the least upper bound
both sides of (10) by and introduce a new variable = of the sequenck,(n)/d;1 <hq(n 1), respectively. Ob-
1/6. Hence, (10) becomes viously, each value ofl,; (n) is eitherd;(n) or d,(n), cf.
(13). The range of eacti(n) is therefore restricted to the
{ |A(f) ©AAa(f)] < Ae(f) (15)  smaller se{di(n),du(n)} C Ap.
A > 1/bmaa The solution obtained by the quantization procedure is

often a good estimate of the optimum solution to (15). The
optimization method is to further improve the quantized so-
lution hy; by optimizing over the reduced region in which
h,; is contained.

To obtain an integer solution satisfying (15), a new pos-
itive variablew is introduced. The solution of the following
integer optimization problem (if any) is a feasible solution

15). . . .
to (15) The main reason for employing the reduced region as
defined above is that this region contains very few variables,

max-y and the computational burden is significantly reduced.

|6(f)TTd ©AAa(f)| +7 < Ae(f)
d(n) € Ay andy >0

New variables; (n) andvz(n), n = 1,..., M, are in-

(16) troduced by the transformation

or d(n) =di(n) -vi(n) + dy(n) - va(n) (20)
max-y wherev; (n),v2(n) € {0,1} andvy(n) + va(n) = 1.
6(f)TTd S\ (Aa(f) +&(f)) +7 <0 Letv be thed x Lvector:v = [v1 (1), va(L), - -, vs (M)
co(f)TTd + MAg(f) @e(f)) + ,;< 0 17) Substituting (20) into the optimization problem (17) yields a
d(n) € A, andy > 0 - new optimization problem witB« A/ +2 variables[v’ X 7].

A > 1/0mas This linear mixed optimization problem can be solved effi-
- ciently using CPLEX.

The optimization problem (17) is a linear mixed integer pro-
gramming problem, and hence the methods for MILP such
as “branch and bound” can be applied. Unfortunately, the
disprete coefficients are allowed to take values from a NoON—\\e consider a symmetric FIR low—pass filter of length-
uniform space and hence not all the commerqal softwares=  The filter has pass baril .1] and stop bandl2 .5] in
packages can be used to solve the problem directly. HOW-tha normalized frequency with(f) = .004 for both pass

ever, the problem can be converted into a linear mixed inte- ;4 stop bands. The number of bits for the coefficients is
ger problem with binary variables as follows: Introdaée b=0.

zeros-ones variables;(n) andy;(n), 0 < i < b &1 for
each coefficientd(n), where

4. DESIGN EXAMPLES

Fig. 2 shows the resulting frequency responses where
the quantization (a) and the optimum quantization (b) plots
b—1 b—1 are indicated by the dashed and solid lines, respectively.
d(n) = in(n)Qi ‘:’Z yi(n)2’ (18) 'I-'h.e solutpq |mprovgd by the optimization (c) and the in-

P P finite precision solution (d) are represented by the dashed



and solid lines, respectively. The plots show a large im- 5. CONCLUSION

provement, 10 dB for the optimal quantized solution. Fur-

ther improvement by 3 dB is obtained by searching around!n this paper, we introduced a novel design method for ob-
the neighbourhood of the optimum quantized solution using taining a near optimum solution to the min—-max problem

CPLEX. for the first order different routing digital filter (DRDF) struc-
201og(8|A(f)]) ture. The method gives a good solution in a short amount of
0 ‘ time. A large improvement over the quantization method

was obtained, in some cases up to 13 dB. An important
observation was that the traditional quantization procedure
was highly sensitive to the choice 6f a property which
was exploited in this contribution. Further research will be
performed in order to quantify and further exploit this prop-
erty.
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