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ABSTRACT

In this paper, we consider a class of FIR filters defined by
the first order difference routing digital filter (DRDF) struc-
ture and sums of two powers–of–two coefficients. A novel
design method is developed for constructing high quality
filters with reference to the min–max error criterion. This
method is highly efficient in terms of computational time.

Simulation studies show a large improvement over ex-
isting methods such as quantization [6]. In some cases, the
peak ripple magnitude over the stop and pass bands is re-
duced up to 13 dB over the quantization method. These
results are achieved even for cases involving small number
of delays.

1. INTRODUCTION

Most of the research on digital filter design has been con-
cerned with problems related to general purpose digital sig-
nal processors. This includes finite word length effects,
tradeoffs between filter–length and word–length [1] and de-
sign by discrete optimization methods [2].

In recent years, attention has also been given to prob-
lems related to actual hardware implementation issues. Fil-
ters with sums of two powers–of–two coefficients are of par-
ticular significance. For such a filter, multiplication is con-
verted into simple operations involving shift and add, (see
e.g. [3], [4] for more details), and hence the hardware im-
plementations become simple with low costs.

The most commonly used criteria in filter designs are
the weighted least squares and the weighted min–max [3].
For Finite Impulse Response (FIR) filters with infinite pre-
cision coefficients, these optimization problems can be effi-
ciently solved by using appropriate optimization techniques
such as least squares approximation methods, linear pro-
gramming methods and the Remez exchange algorithm [5].
However, for filter designs with discrete coefficients, the
corresponding integer programming problems are combina-
toric optimization problems and hence are much more diffi-
cult to solve than their infinite precision counterparts.

The branch and bound technique is perhaps the most
well–known and straightforward integer programmingmethod.

It has been successfully used for the design of FIR digital
filters, see e.g. [2], [3]. This type of technique is, how-
ever, notorious in its computational requirement for prob-
lems with large filter lengths. Unless a very good lower
bound is available together with other useful forcing and
pruning rules, this method is only applicable for small size
filter design problems.

In this paper, we consider a specific FIR filter structure
based on sums of two powers–of–two FIR coefficients and
a digital integrator. This FIR–integrator structure is partic-
ularly well suited for low–pass filters with some degree of
oversampling. It is attractive for hardware implementations
due to its simplicity, stability and cost–effectiveness. This
filter structure was proposed in [6] for the DRDF structure
which is basically a hardware structure for serial implemen-
tation. However, the structure is applicable to a much wider
class of implementations, such as with parallel arithmetic,
etc. To ensure that the FIR–integrator filter is of linear
phase, a simple symmetry constraint is imposed.

The contribution of this paper is a novel computational
method based on the branch and bound technique in con-
junction with an optimized quantization procedure for solv-
ing the linear integer programming problem.

2. FIRST ORDER DRDF WITH LINEAR PHASE

The FIR–integrator filter structure is given in Fig. 1. The
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Figure 1: FIR filter structure based on sum of two powers–
of–two coefficientsd(n) and a digital integrator.

filter consists of a transversal filter with tap–weightsd(n)
at every� seconds and cascaded with a first order digital
integrator. The overall impulse responseh(n) is given by



the difference relation

h(n) = h(n� 1) + d(n) (1)

whered(n) are the DRDF coefficients. It is assumed that
h(n) = d(n) = 0 for n < 0 andn � L whereL denotes
the filter length. The transversal filter coefficientsd(n) are
expressed as the sum or difference of two powers–of–two

terms [3]. Thusd(n) 2 Ab whereAb =
nP2

i=1 Si2
gi

o
and0 � gi � b� 1. The value ofb is the maximum shift in
bits, or “shift–range” andSi takes one of the values1; 0;�1.

There are generally four cases for the design of linear–
phase FIR filters. Without loss of generality, we will only
consider the case whereL is odd and the coefficientsh(n)
are symmetric. Other cases can be reformulated in a similar
manner.

It follows from (1) that a necessary and sufficient condi-
tion for h(n) to be a FIR filter is that the tap–weightsd(n)
satisfy the condition

h(L� 1) =

L�1X
k=0

d(k) = 0: (2)

This condition also ensures that the transfer function
D(z) (theZ–transform ofd(n)) has a zero at unity, thus
the corresponding pole of the integrator is cancelled.

Next, we impose the linear phase constraint to the first
order DRDF, considered in [6]

h(n) = h(L� 1� n) (3)

Initially, for n = 0 and by (2) we haveh(0) = h(L� 1),
d(0) = h(0) = 0. Using induction with respect ton, it can
be shown that (3) holds iff the tap–weightsd(n) satisfy the
following anti–symmetry condition

d(n) = �d(L� n) (4)

for all n. The frequency responseH(f) of the linear–phase
FIR filter h(n) can be written as

H(f) =
L�1X
n=0

h(n)e�j2�f�n = e�j2�f�(
L�1

2
)A(f) (5)

whereA(f) is the real amplitude response, cf. [5].
For filters with odd lengthL, the real amplitude is given

byA(f) = �(f)
T
h, where

h =

0
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(6)
andM = (L� 1)=2.

Letd = [d(1) � � � d(M)]T be aM �1 vector containing
the transversal filter coefficients and letT denote aM �M
lower triangular matrix of all ones. The FIR filter coeffi-
cients is then given byh = Td and the real amplitude re-
sponse is

A(f) = �(f)TTd (7)

3. PROBLEM FORMULATION AND SOLUTION

The filter design problem is to find a coefficient vectord
satisfying the feasibility constraint

jA(f)�Ad(f)j � "(f) (8)

whereAd(f) is the real amplitude of the desired response,
"(f) is the specified (strictly positive) design tolerance and
f belongs to the interval[0; :5].

For the infinite precision solution, a feasible solution to
(8) (if any), can be found by solving the min–max problem

min
d2RM

max
f2[0;:5]

v(f)jA(f)�Ad(f)j (9)

wherev(f) = 1="(f). The design specification (8) has a
feasible solution iff the optimum objective value in (9) is
less than or equal to one.

To obtain a quality filter with discrete coefficients, a
scaling factor is included in the design procedure. The new
mixed integer programming problem is to obtain a set of co-
efficientsd(n) 2 Ab, and the scaling factor� such that the
following feasibility conditions are satisfied.

�
j�A(f)�Ad(f)j � "(f)
0 � � � �max;

(10)

where�max is the maximum value of�. Note that (10) has
M discrete variables and one continuous variable�.

Let ho denote the infinite precision solution to the in-
teger programming problem. The design by quantization
starts by fixing the value of� as

� = �q = max
1�n�M

jho(n)� ho(n� 1)j

2b
(11)

followed by a recursive quatization procedure to obtain the
discrete coefficients [6] (cf.�–modulation). LetQ(x) de-
note a non–uniform quantizer defined for allx. For jxj �
2b, the quantized valueQ(x) is determined by roundingx
to the closest value inAb, and forjxj > 2b the quantizer is
saturated at levelsQ(x) = �2b.

The quantized solutionhq is then calculated according
to the following recursion:

� Initial value:

hq(1) = dq(1) = Q(ho(1)=�q) (12)



� Repeat forn = 2; : : : ;M

dq(n) = Q(ho(n)=�q � hq(n� 1)) (13)

hq(n) = hq(n� 1) + dq(n) (14)

An optimal quantized solution is obtained as follows.
We observe that for quantization, the scaling value� con-
tains the most crucial information. The main idea of this
step is to obtain an optimum quantized solution by search-
ing for the best value of�. The maximum ripple in the pass
and stop bands is plotted as a function of�. The best value
�q1 with the corresponding coefficientsdq1 andhq1 are cho-
sen. This procedure can be done very fast (using e.g. Mat-
lab) and the best solution has much smaller maximum ripple
in both pass and stop bands when compared to the quantized
solution.

To overcome the non–linear formulation in (10), divide
both sides of (10) by� and introduce a new variable� =
1=�. Hence, (10) becomes

�
jA(f)� �Ad(f)j � �"(f)
� � 1=�max

(15)

To obtain an integer solution satisfying (15), a new pos-
itive variable
 is introduced. The solution of the following
integer optimization problem (if any) is a feasible solution
to (15).

8>><
>>:

max

j�(f)TTd� �Ad(f)j+ 
 � �"(f)
d(n) 2 Ab and
 � 0
� � 1=�max

(16)

or 8>>>><
>>>>:

max

�(f)TTd� �(Ad(f) + "(f)) + 
 � 0
��(f)TTd+ �(Ad(f)� "(f)) + 
 � 0
d(n) 2 Ab and
 � 0
� � 1=�max

(17)

The optimization problem (17) is a linear mixed integer pro-
gramming problem, and hence the methods for MILP such
as “branch and bound” can be applied. Unfortunately, the
discrete coefficients are allowed to take values from a non–
uniform space and hence not all the commercial software
packages can be used to solve the problem directly. How-
ever, the problem can be converted into a linear mixed inte-
ger problem with binary variables as follows: Introduce2b
zeros-ones variablesxi(n) andyi(n), 0 � i � b � 1 for
each coefficientsd(n), where

d(n) =

b�1X
i=0

xi(n)2
i �

b�1X
i=0

yi(n)2
i (18)

and impose the following inequality constraint ford(n) 2
Ab

b�1X
i=0

xi(n) +

b�1X
i=0

yi(n) � 2: (19)

This mixed zeros–ones integer programming problem can,
in principle, be solved by many MILP software packages
such as CPLEX to obtain the global solution. The real-
ity is, however, the exponential increase in the computa-
tional requirement when the number of filter coefficients is
increased.

In this paper, we introduce an efficient optimization method,
based on the above ideas combined with the branch and
bound technique to get a further improvement of the optimal
quantized solution by searching around its neighbourhood.

For each value ofn, 1 � n �M , letdl(n) anddu(n) 2
Ab denote the greatest lower bound and the least upper bound
of the sequenceho(n)=�q1 � hq1(n� 1), respectively. Ob-
viously, each value ofdq1(n) is eitherdl(n) or du(n), cf.
(13). The range of eachd(n) is therefore restricted to the
smaller setfdl(n); du(n)g � Ab.

The solution obtained by the quantization procedure is
often a good estimate of the optimum solution to (15). The
optimization method is to further improve the quantized so-
lution hq1 by optimizing over the reduced region in which
hq1 is contained.

The main reason for employing the reduced region as
defined above is that this region contains very few variables,
and the computational burden is significantly reduced.

New variablesv1(n) andv2(n), n = 1; : : : ;M , are in-
troduced by the transformation

d(n) = dl(n) � v1(n) + du(n) � v2(n) (20)

wherev1(n); v2(n) 2 f0; 1g andv1(n) + v2(n) = 1.
Letv be the2M�1 vector:v = [v1(1); v2(1); � � � ; v2(M)]T .

Substituting (20) into the optimization problem (17) yields a
new optimization problem with2�M+2 variables

�
v
T � 


�
.

This linear mixed optimization problem can be solved effi-
ciently using CPLEX.

4. DESIGN EXAMPLES

We consider a symmetric FIR low–pass filter of lengthL =
35. The filter has pass band[0 :1] and stop band[:2 :5] in
the normalized frequency with"(f) = :004 for both pass
and stop bands. The number of bits for the coefficients is
b = 9.

Fig. 2 shows the resulting frequency responses where
the quantization (a) and the optimum quantization (b) plots
are indicated by the dashed and solid lines, respectively.
The solution improved by the optimization (c) and the in-
finite precision solution (d) are represented by the dashed



and solid lines, respectively. The plots show a large im-
provement, 10 dB for the optimal quantized solution. Fur-
ther improvement by 3 dB is obtained by searching around
the neighbourhood of the optimum quantized solution using
CPLEX.
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Figure 2: Frequency response for the first order DRDF

Fig. 3 shows the maximum deviation for both pass and
stop bands in dB as a function of� by varying� up to20%,
either to the left or right of�q with small deviation:000005.
The ring around the point in the middle of the graph stands
for the position of the quantized solution. From the plot, it
can be seen that a much better solution with smaller ripple
can be obtained by changing the value of�.
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Figure 3: Maximum deviation versus scaling factor�

5. CONCLUSION

In this paper, we introduced a novel design method for ob-
taining a near optimum solution to the min–max problem
for the first order different routing digital filter (DRDF) struc-
ture. The method gives a good solution in a short amount of
time. A large improvement over the quantization method
was obtained, in some cases up to 13 dB. An important
observation was that the traditional quantization procedure
was highly sensitive to the choice of�, a property which
was exploited in this contribution. Further research will be
performed in order to quantify and further exploit this prop-
erty.
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