
FAST SUBSPACE TRACKING AND NEURAL NETWORK LEARNING BY A

NOVEL INFORMATION CRITERION

Yongfeng Miao and Yingbo Hua

Department of Electrical and Electronic Engineering

The University of Melbourne

Parkville, Victoria 3052, AUSTRALIA

ABSTRACT

We introduce a novel information criterion (NIC) for
searching for the optimum weights of a two-layer lin-
ear neural network (NN). The NIC exhibits a single
global maximum attained if and only if the weights
span the (desired) principal subspace of a covariance
matrix. The other stationary points of the NIC are
(unstable) saddle points. We develop an adaptive algo-
rithm based on the NIC for estimating and tracking the
principal subspace of a vector sequence. The NIC algo-
rithm provides a fast on-line learning of the optimum
weights for the two-layer linear NN. The NIC algorithm
has several key advantages such as faster convergence
which is illustrated through analysis and simulation.

1. INTRODUCTION

It is known that there is a close relationship between a
class of linear neural networks (NNs) and the concept
of principal subspace [1]. The concept of principal sub-
space is often referred to as principal subspace analysis
(PSA) in the context of statistical analysis. When one
is interested in the orthonormal eigenvectors spanning
a principal subspace, the so-called principal component
analysis (PCA) is then referred to. Both PSA and PCA
also represent the desired function of a class of linear
NNs when the weights of the NNs span a principal sub-
space. The process of �nding the proper weights is
called \learning".

The well-known Oja's algorithm [2] was developed
based on some heuristic reasoning. The global conver-
gence property of Oja's algorithm remained as a mys-
tery for some time until the analyses done in [3, 4]. An
improved version of Oja's algorithm, called the LMSER
algorithm, was developed in [5] where the well-known
concept of gradient searching was applied to minimize
a mean squared error (MSE). Unlike Oja's algorithm,
the LMSER algorithm could be claimed to be glob-
ally convergent since the global minimum of the MSE
is only achieved by the principal subspace and all the

other stationary points of the MSE are saddle points.
The MSE has also led to many other algorithms which
include the projection approximation subspace track-
ing (PAST) algorithm [6]. It is clear that a properly
chosen criterion is a very important part in developing
any learning algorithm.

In this paper, we introduce a novel information cri-
terion (NIC) for searching for the optimum weights
of a two-layers linear NN. The NIC exhibits a single
global maximum attained if and only if the weights
span the (desired) principal subspace of a covariance
matrix. The other stationary points of the NIC are
(unstable) saddle points. Unlike the MSE, the NIC is
non-quadratic and has a steep peak around the global
maximum. Applying gradient ascent searching to the
NIC yields the NIC algorithm which is globally conver-
gent and fast.

In Section 2, we propose the NIC formulation for
PSA and depicts its landscape picture. The NIC al-
gorithm is derived in Section 3 with comparisons to a
number of existing PCA/PSA algorithms. Section 4
deals with the global convergence analysis of the NIC
algorithm using the Lyapunov function approach. In
Section 5, the performance of the NIC algorithm is
evaluated through simulation examples. Conclusions
are drawn in Section 6.

2. NOVEL INFORMATION CRITERION

FORMULATION FOR PSA

Given W in the domain D = fWjWTRW > 0g, we
propose the following criterion for PSA

JNIC(W) =
1

2
trflog(WTRW)� (WTW)g (1)

where R denotes a covariance matrix. The landscape
of NIC is depicted by the following two theorems.

Theorem 2.1 [8]W is a stationary point of JNIC (W)
in the domainD if and only ifW = UrQ, where Ur 2



<n�r contains any r distinct orthonormal eigenvectors
of R and Q is an arbitrary orthogonal matrix.

Theorem 2.2 [8] In the domain D, JNIC (W) has a
global maximumwhich is attained when and only when
W =U1PrQ withU1 composed of the �rst r principal
orthonormal eigenvectors of R, Pr an r � r permuta-
tion matrix and Q an arbitrary orthogonal matrix. All
other stationary points are saddle points of JNIC(W).

Theorem 2.1 establishes a property of all the sta-
tionary points of JNIC(W). Theorem 2.2 further dis-
tinguishes the global maximum attained by W span-
ning the principal subspace from all other stationary
points which are saddle points. From these two the-
orems, we note the NIC has the following attractive
properties:

� The NIC has a global maximum at the principal
subspace while all other stationary points are saddle
points. Therefore, the gradient ascent searching is guar-
anteed to converge to the desired principal subspace for
proper initializations of W.

�W is orthonormal at the maximum, and hence no ex-
plicit orthonormality constraint is needed. In fact, it is
shown in [8] that the rate at whichW orthonormalizes
itself by the NIC algorithm is a constant independent
of the eigenvalues of R.

� Compared with the quadratic MSE [5], the NIC is
non-quadratic and has a steeper landscape around the
principal subspace. Therefore, the gradient searching
of the NIC is expected to converge faster than that of
the MSE.

�Under certain conditions, the principal subspace max-
imizes the MIC [9]

JMIC(W) =
1

2
trflog(WTRW)� log(WTW)g (2)

which appears almost the same as JNIC(W) except
for the logarithm in the second term. However, we
note that unconstrained JMIC(W) does not yield an
e�ective PSA criterion because the maximum value of
the MIC may not be achieved only by the orthonormal
principal subspace [8].

3. THE NIC LEARNING ALGORITHM

The NIC algorithm admits both the batch-mode ma-
trix and the data-driven recursive least-squares (RLS)
implementations, depending on whether or not the co-
variance matrix is directly involved in the computa-
tions. The RLS implementation provides an on-line
learning algorithm for the two-layer linear NN with n
inputs, r hidden neurons and n outputs.

3.1. Batch Implementation

From the gradient of JNIC(W) with respect to W, we
have the following gradient ascent rule for updating
Wk

Wk = (1� �)Wk�1 + �R̂kWk�1(W
T

k�1R̂kWk�1)
�1

(3)
where 0 < � < 1 denotes the learning step size, and
R̂k denotes the estimate of the covariance matrix for
k available samples. It can be obtained by the rank-1
update as

R̂k = �(k � 1)R̂k�1=k + xkx
T

k
=k (4)

where 0 < � � 1 denotes the forgetting factor which
is chosen in the range (0; 1) to implement an e�ective
window of size 1=(1� �) for subspace tracking of non-
stationary process, whereas � = 1 is chosen for the
neural network learning of stationary process.

Equations (3) and (4) represent the batch imple-
mentation of the NIC algorithm where the subspace
is updated after each rank-1 update of the covariance
matrix. It requires O(M2r) 
ops per update which is
in contrast to O(M3) for the direct eigenvalue decom-
position (EVD). The computations involved are sim-
ple matrix additions, multiplications, and inversions,
which are ready for parallel implementations.

The Oja's algorithm [2], which is an approximate
gradient rule to minimize the MSE, has the following
update equation

Wk =Wk�1 + �(I �Wk�1W
T

k�1)R̂kWk�1 (5)

where � is the learning step size which is dependent on
both the initial choice ofWk and the eigenvalues of R̂k.
Comparing (3) and (5), we can see that the NIC algo-
rithm actually extends Oja's algorithm by introducing
a mechanism to adaptively adjust the step size at each
step. The adaptive step size provides the advantage of
fast convergence as will be shown by simulations.

3.2. RLS Implementation

By applying matrix inversion lemma to (3) and making
the same projection approximation as in [6], the RLS
implementation of the NIC algorithm follows:

yk =WT

k�1xk (6)

gk =
��1Pk�1yk

1 + ��1yT
k
Pk�1yk

(7)

Pk = ��1Pk�1 � ��1gky
T

kPk�1 (8)
~Wk = ~Wk�1 + (xk � ~Wk�1yk)g

T

k (9)

Wk = (1� �)Wk�1 + � ~Wk (10)



The initialization of this data-driven NIC algorithm
is similar to that of the standard RLS algorithm. The
initial settings for convergence can be: P0 = �Ir , where
� is a small positive number, ~W0 = 0, and W0 = a
random M � r matrix. From the above equations, it
is easy to note that the computational complexity of
(6-10) is O(Mr) 
ops per update, resulting in a very
cheap subspace tracking algorithm.

For the learning of two-layer NNs, ~Wk is �rst ad-
justed according to (9) and then Wk by (10). Equa-
tions (7-8) calculate gk which adaptively adjusts the
step size at time k. Equation (6) and the calculation of
~xk = ~Wk�1yk simply form the forward feeding path of
the network. Figure 1 shows the block diagram of this
learning process. It should be noted from the analysis
in Section 4 that as Wk tends to W, so does ~Wk.
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Figure 1: Block diagram of the two-layer linear NN
learning using the NIC algorithm

Compared with other PSA/PCA algorithms, the
RLS implementation of the NIC algorithm has the fol-
lowing properties:

� Unlike Oja's algorithm which uses a constant step
size for learning, the NIC algorithm uses an adaptive
step size gk which is updated by equations (7) and (8).

� The NIC algorithm utilizes a sample covariance ma-
trix which is updated by (4) while the the LMSER [5]
and Oja's algorithm [2] only use the stochastic estimate

R̂k = xkx
T

k
.

� In the special case when �! 1, (6-10) yield the set of
update equations for the PAST algorithm [6]. For the
NIC, � is in principle allowed to be any value within the
interval (0; 1). It is shown in [8] that the NIC essentially
represents a robust improvement of the PAST.

� The NIC formulation and algorithm can be easily
adapted to extract the individual eigenvalues and eigen-
vectors of the signal subspace when used in conjunction
with the de
ation technique as used by the APEX algo-
rithm [7]. The NIC therefore provides some potential

improvements over existing PCA algorithms based on
Oja's algorithm [2].

4. GLOBAL CONVERGENCE ANALYSIS

Under the condition that xk is from a stationary pro-
cess and the step size � is small enough, the discrete-
time di�erence equation (3) approximates the following
continuous-time ordinary di�erential equation (ODE)

dW(t)

dt
= RW(t)[WT (t)RW(t)]�1 �W(t) (11)

where t = �k. We will establish the global convergence
properties of this ODE by the Lyapunov function ap-
proach [4].

We note L0(W) = �JNIC(W) is a Lyapunov func-
tion for (11) with a stable equilibriumW = U1PrQ in
the region D = fWjL0(W) < 1g = fWjWTRW >
0g. To further establish a strong convergence property
at W = U1PrQ, we construct the following function

L(W) =
1

2
ftr(WTW)� tr[log(WTRrW)]g (12)

where Rr = U1�1U
T

1
is the best (least-squares) rank-

r approximation of R. The following two lemmas can
be shown [8].

Lemma 4.1 LetW(t) be the solution of the ODE (11)
and W(0) 2 D. Then for all t 2 [0;1), we have

kWT (t)W(t)�IrkF = e�2tkWT (0)W(0)�IrkF (13)

Lemma 4.2 Let W(t) be the solution of the ODE
(11) and WT (0)RrW(0) > 0. Then for all t 2 [0;1),
WT (t)RrW(t) > 0.

Lemma 4.1 establishes the constant convergence
rate at which W(t) orthonormalizes itself for any ini-
tialW(0) 2 D. Lemma 4.2 implies that for any proper
W(0), the solution of W(t) along the trajectory of
(11) will never evolve into any of the saddle point of
JNIC(W). The above mentioned global convergence
is established by the following theorem (see [8] for a
proof).

Theorem 4.1 L(W) is a Lyapunov function for the
ODE (11), whose domain of attraction is


 = fWjWTRrW > 0g (14)

i.e., for any W(0) 2 
, W(t) globally converges along
the trajectory of (11) to an arbitrary orthonormal basis
of the principal subspace.

Note that (14) identi�es the largest domain of at-
traction for the ODE (11) to converge to the principal
subspace solution. Because a randomly selected W(0)
satis�es (14) almost surely, we can initialize Wk by a
random matrix for the NIC algorithm.



5. SIMULATIONS

We present two examples to test the performance of the
NIC algorithm. The �rst example is for the two-layer
linear NN learning using the data-driven NIC algorithm
(6-10). The learning curves of subspace distance are
plotted in Figure 2 for the NIC, the LMSER and Oja's
algorithm. It is observed that the NIC algorithm out-
performs the other two in both the convergence speed
and the subspace estimation accuracy.
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Figure 2: Learning curves for subspace distance of the
NIC, the LMSER and Oja's algorithm.
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Figure 3: Subspace tracking error of the NIC and Oja's
algorithm.

The second example is from [9] which tests the
tracking capability of any subspace tracking algorithm
by enforcing an abrupt 90� rotation of the principal
subspace at time k = 10. The subspace tracking error
of an algorithm is measured using the largest princi-
pal angle between the subspace spanned by columns
of Wk and that obtained by EVD applied directly to
(4) at each time step k. Figure 3 shows the subspace
tracking error of the batch-mode NIC (3) and that of

of Oja's algorithm (5). It is noted that the NIC has a
good tracking capability in contrast to the poor track-
ing capability of Oja's algorithm.

6. CONCLUSIONS

The NIC maximization is a novel non-quadratic formu-
lation of the PSA, and has some signi�cant advantages
over the conventional formulation. The NIC algorithm
is fast and globally convergent for almost any weight
initializations. Both the batch and the RLS implemen-
tations of the NIC demonstrate good subspace track-
ing and convergence capabilities. The NIC algorithm
is clearly useful in linear NN learning and real-time
signal processing applications where fast adaptive sub-
space estimation is required. Issues such as the explicit
convergence rate of the NIC algorithm, the connections
between the iterative equation (3) and the orthogonal
iteration technique, and the e�ect of step size are cur-
rently under further investigation.
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