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ABSTRACT

In this paper, we present an adaptive algorithm for space-
time channel identi�cation and equalization. The proposed
algorithm performs joint channel estimation and sequence
detection by optimizing a least squares cost function it-
eratively in a forward and backward manner. Simulation
results demonstrate the proposed algorithm to be data ef-
�cient and fast converging. In addition, good BER perfor-
mance is achieved in time-varying channels at relatively low
SNR and with an extremely short start-up sequence. These
attributes render it suitable for wireless mobile communi-
cations using short burst data format.

1. INTRODUCTION

The proliferation of wireless communication networks has
attracted increasing attention and e�ort in the research area
of blind and semi-blind channel identi�cation and equal-
ization. The main motivation of blindly identifying and
equalizing the channel is the o�er of higher transmission ef-
�ciency and bandwidth conservation through shortening or
eliminating the training sequence. This is much desired in
TDMA mobile communication networks where short burst
data formats are used. For example, out of the 148 bits of
the GSM data packet's time-slot, 26 bits are allocated for
training the equalizer. Hence, by eliminating or shortening
the training length, the spectral e�ciency can be signi�-
cantly improved.

The main technical challenges of developing channel
identi�cation and equalization algorithms for wireless mo-
bile TDMA networks using short burst data formats can be
succinctly summarized as follow:

1. Ability to track time-varying channel.

2. Only require an extremely short or no training se-
quence for initial channel estimation.

3. Data e�cient and fast converging due to short burst
data format.

4. Perform adequately at relatively low SNR.

Several families of blind channel identi�cation and equal-
ization algorithms have been proposed. However, many of
the current approaches may not be adequate for such mo-
bile communications applications. For instance, algorithms
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based on exploiting the higher order statistical information
in the channel outputs [1][2] can �nd limited applications
in wireless mobile communications. This is because these
algorithms generally exhibit slow convergence and require
large number of channel outputs needed to obtain good es-
timates of the higher order statistics for reliable channel
equalization.

The pioneering works of Tong et. al.[5] and Moulines et.
al[6] have led to the developments of several blind channel
identi�cation algorithms based on the second-order cyclo-
stationary properties of the channel outputs. In general,
these methods achieve blind channel equalization by solv-
ing a system of linear equations derived from the covariance
matrix of the vectorized channel outputs. These algorithms
are block based and can o�er the potential of fast and data
e�cient blind channel identi�cation. However, their ex-
plicit assumption of channel's stationarity render them un-
suitable when the radio propagation channels are rapidly
time-varying.

In most digital communication system, the transmitted
symbols are constrained to �nite alphabet set 
. This will
in turn limit the noiseless channel outputs to a �nite set.
The trellis relationship of channel outputs is determined by
the state transitions of the transmitted data and the mul-
tipath propagation channel. This trellis relationship not
only provide a useful constraint, it also shows that channel
identi�cation and equalization of unknown channels can be
achieved optimally (in least squares sense) by joint chan-
nel estimation and sequence detection. In practice, joint
channel estimation and sequence detection is di�cult to
implement and suboptimal solutions have been proposed.
For example, Seshadri[3] proposed a fast blind trellis search
algorithm based on Generalized Viterbi Algorithm (GVA)
where data detection and channel estimation are performed
recursively but separately.

This work is distinct from these previous developments.
In this paper, the problem considered here is one of semi-
blind identi�cation and equalization of time-varying chan-
nels where a short training sequence is used to obtain the
initial channel estimates. We approach the problem by ex-
ploiting the richness of the inherent structural relationship
between channel parameters and data sequence by repeated
use of available data through a forward-backward optimiza-
tion procedure. In the following sections, we describe the
data model and the proposed algorithm, and present the
simulation results and an analysis of its computational com-



plexity.

2. DATA MODEL AND PROBLEM

FORMULATION

Consider an m elements antenna array where each array
channel output is oversampled by M times of the symbol
period Tb. The channel output vector can be compactly
written as [5]

x(kTb) = �(kTb)sk + n(kTb) (1)

where x(kTb) = [x1(kTb); : : : ; x1((k+M�1
M

)Tb); : : : ; xm(kTb)

; : : : ; xm((k+M�1
M

)Tb)]
T and similarly for n(kTb). The sym-

bol vector is given by sk = [sk; : : : ; sk�L+1]
T . xi(kTb) and

ni(kTb) are the channel output and observation noise of the
ith array channel at time kTb. sk 2 
 is the transmitted
symbol at kTb and LTb is the e�ective length of the channel
impulse response.

Suppose the noise n(kTb) is a zero-mean Gaussian ran-
dom process and P channel output vectors are received,
the least squares of estimation of channel parameters and
sequence detection can be obtained by solving the mixed
continuous-FA parameter optimization problem:

n
fb�(kTb)gPk=1; bSo = argmin

PX
k=1

jx(kTb)� �(kTb)sk j
2
F
:

(2)
f�(kTb)g

P
k=1 are the continuous parameter and S = [s1; : : : ;

sP ] is a Toeplitz matrix parametrized by ~s = [s
�L; : : : ; sP ]

T .
The elements in S are contrained to the �nite alphabet set

.

We can write an equivalent time-reversed version of (2)
as

n
fb�r(kTb)g

P
k=1; bSro = argmin

PX
k=1

jxr(kTb)� �r(kTb)srkj
2
F

(3)
where xr(kTb) = x(lTb) and srk = [sl�L+1; : : : ; sl]

T . The
time-reversed channel matrix �r(kTb) is given by

[�r(kTb)]i;k = [�(lTb)]i;L�k+1 (4)

and l = P � k + 1. Similarly, the symbol matrix Sr =
[sr1; : : : ; srP ] is a Toeplitz matrix parametrized by ~sr = [sP ;
: : : ; s

�L]
T . [A]i;j denotes the matrix element located at the

ith row and jth column of A.
Under the ideal conditions of perfect initial estimates

and perfect tracking, the adaptive Maximum Likelihood
Sequence Detection (MLSD) algorithms such as [3][4] can
achieve optimal channel identi�cation and equalization. How-
ever, in practical radio environment where short data burst
formats are used and multipath propagation channels are
time-varying, we need to address the following issues:

1. Good initial estimates of the channel are spectrally
expensive to achieve. It entails reserving portion of
the data sequence for non-blind channel estimation.
Due to the presence of noise, reducing the training
length will result in noisier initial estimates and in-
duce errors in the sequence detection.

2. Due to the time-variation of the channel parameters,
the following inequality holds:

�(kTb) 6= �(iTb) for all i 6= k: (5)

When �(kTb) = �(iTb) for all fi; kg is imposed on
time-varying channels, modelling errors will be in-
troduced and can result in poorer sequence detec-
tion. One can argue that the time-varying channel
can be approximated by contiguous segments of time-
invariant channel where each data sub-block is inde-
pendently processed. This is suboptimal as the full
information residing within the data block is not ex-
ploited. Moreover, resolving the competing require-
ments of having large sub-block size and containing
modelling errors remain open.

3. Joint estimation of time-varying channels and sequence
detection is di�cult to implement. Suboptimal ap-
proaches estimate the channel parameters and per-
form data detection recursively but separately have
been proposed[3][4]. In general, the decoupled opti-
mization of the LS cost function will lead to subop-
timal solution.

3. AN ADAPTIVE ALGORITHM FOR LEAST

SQUARES SPACE-TIME CHANNEL

IDENTIFICATION AND EQUALIZATION

In this paper, we propose an algorithm that can potentially
resolve these issues by processing the received data in batch
and optimize the LS cost function iteratively in forward-
backward manner.

The proposed algorithm begins with a noisy (but of suf-
�ciently accuracy to avoid divergence) initial channel es-
timates. Then it seeks to optimize the LS cost function
alternatingly and recursively with respect to the channel
parameters and data sequence. Towards the end of the for-
ward iteration, the corresponding channel parameters are
likely to converge nearer to the true estimates and the sym-
bol vectors will have a lower probability of error. In the
backward iteration, (3)(the time reversed version of (2))
is similarly minimized based on the initial state extracted
from the last symbol vector in S and its corresponding time-
reversed channel estimates. The improved initial estimates
can lead to more accurate estimates S and f�(kTb)g

P
k=1.

Hence, with each forward-backward optimization iteration,
the residual in (2) will be further reduced with the improved
estimates of S and f�(kTb)g

P
k=1. The cyclic re�nement of

the channel estimates and sequence detection will monoton-
ically decrease the LS cost function and converge �nally to
a minima.

In this paper, the channel estimation and sequence de-
tection are performed recursively but separately as follow.
The symbol vector at time kTb are decided based on the last
updated channel estimates. Then, the channel estimates
are adaptively updated in a decision directed manner. One
way to exploit the inherent Toeplitz structure of symbol
matrix S recursively is to apply the Generalized Viterbi al-
gorithm (GVA)[3]. GVA retains a number of \locally best"
survivors entering each state and updates the channel esti-
mates associated with each survivor independently. How-
ever, the computational complexity of employing GVA in



the proposed approach can become prohibitive. In this de-
velopment, we adopt a simpler VA implementation where
only one survivor is retained in each state and the chan-
nel parameters are updated based on the survivor with the
lowest accumulated metric.

The channel parameters are adaptively updated by the
computationally simple Least Means Squares (LMS) imple-
mentation of

b�(kTb) = b�((k� 1)Tb) + �
�
1mM 
bsHi �� ��(kTb)
 1TL�

(6)
and similarly for its time-reversed version. �(kTb) = x(t)�b�((k� 1)Tb)bsk) and bsk is the tentative estimates of the kth

symbol vector. 1L denotes a vector of 1 of length L and �

is the adaptation step-size. 
 and � are the Kronecker and
Hadamard operator, respectively.

The algorithm proposed herein can be summarized as
follows.

The Algorithm

Compute the initial estimates of �(Tb)
(0) and derive the

initial state s(l)(0) from the start-up sequence. Set l = 0.

� Repeat

{ Optimize (2) by joint channel matrix estimation
using (6) and sequence detection by VA.

{ Perform Time-reversal to obtain fb�r(kTb)(l)gPk=1
and bS(l)r from fb�(kTb)(l)gPk=1 and bS(l), respec-
tively.

{ Set

s
(l)
r (0) =

�
[S

(l)
r ]2���L;1
�

�
(7)

where [A]i���k;l is a vector extracted elements in
lth column and ith to kth row of the matrix A
and � is any element in 
.

{ Optimize (3) by joint channel matrix estima-
tion using the time-reversed version of (6) and
sequence detection by VA.

{ Perform Time-reversal to obtain fb�(kTb)(l)gPk=1
and bS(l) from fb�r(kTb)

(l)gPk=1 and bS(l)r , respec-
tively.

{ l = l + 1

� Until convergence.

4. SIMULATION RESULTS

In this section, we describe some simulation results using
the proposed algorithm. We consider a two element antenna
array with temporal oversampling 2 times the symbol rate.
The carrier frequency used is 900MHz. The data symbols
are drawn from 
9f�1; 1g and transmitted at GSM data
rate of 277kps in packets 100 symbols each. The combined
transmit and receive �lter frequency response is a raised co-
sine with roll-o� factor of 35%. We simulate the Rayleigh
multipath environment based on the TU channel from the
ETSI recommendations[7] with paths arriving with a uni-
form spatial distribution. The local spread of each path is

30 degrees. In this study we restrict the channel length to
L = 3.

Figure 1 shows the bit error rates for the proposed al-
gorithm and GVA as a function of SNR. The step-size used
for LMS update is 0:0025 and the initial channel estimates
are obtained from an extremely short training sequence of
5 symbols using direct matrix inversion. In GVA, K = 4
locally best survivors entering each state are retained. The
results are averaged directly from 500 independent trials.
The relative speed between the transmitter and receiver is
300km/hr. This results in a doppler frequency of 250Hz.
The result shows that at an error rate of 10�3, the proposed
algorithm su�ers a loss of 3dB against the known channel
bound. On the other hand, GVA su�ers 9dB. Figure 2
plots a typical example of the convergence trajectory of pro-
posed algorithm and its corresponding number of erroneous
symbol detection as a function of forward-backward itera-
tions. Note that the LS cost function and its corresponding
number of symbol detection errors reduces monotonically
with iteration number. Moreover, the LS cost function after
each forward(backward) optimization is always lower than
the preceeding backward(forward) optimization. Typically,
convergence is achieved within 3 iterations.

5. ANALYSIS OF COMPUTATIONAL

COMPLEXITY

We analyze the relative computational complexity of GVA
and proposed algorithm based on the number of complex
multiplications and additions and is denoted by (�mul; �add).
The number of computations involved for each LMS channel
update and metric computation are (3mML+mM; 2mML+
mM) and (mML+mM;mML+2mM), respectively. The
number of metric computations at each time instant by
GVA and proposed algorithm are K � 2L and 2L, respec-
tively. The corresponding number of channel updates are
K � 2L and 1. Hence the total number of computations
involved in GVA and the proposed algorithm are (K�2L�
(4mML + 2mM);K � 2L � (3mML + 3mM)) and (2� �
(2L� (mML+mM)+3mML+mM);2�� (2L� (mML+
2mM) + 2mML +mM)), respectively. � is the number of
forward-backward iterations to achieve convergence. In this
study, the number of computations per symbol for GVA
and the proposed algorithm (� = 3) are (1792; 1536) and
(1008; 1128), respectively.

6. CONCLUSIONS

In this paper, we have presented an adaptive semi-blind
channel identi�cation and equalization algorithm that jointly
estimate the time-varying channel and perform sequence de-
tection in a least squares framework. The simulation results
are encouraging. They have demonstrated the proposed al-
gorithm to be data-e�cient, fast converging and capable of
achieving good BER performance in time varying channel
environment at relatively low SNR and with an extremely
short training sequence. These features render this algo-
rithm to be potentially suitable for short burst data for-
mat communications where only extremely short training
sequence can be made available in order to conserve band-
width.
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Figure 1: BER vs. SNR: � � � � �: proposed algorithm.
�o�: VA with exact knowledge of channel parameter ma-
trix. � � �+ � � �: GVA
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Figure 2: (a)LS Cost Function and (b)Number of Symbol
Detection Errors vs. Iterations. SNR: 3dB. The LS cost
function after the forward and backward optimization at
ith iteration are denoted by `�' and `+', respectively.


