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ABSTRACT

A formant analyser is interpreted probabilistically via a
noisy channel model. This leads to a robust method of in-
corporating formant features into hiddenMarkov models for
automatic speech recognition. Recognition equations fol-
low trivially, and Baum-Welch style re-estimation equations
are derived. Experimental results are presented which pro-
vide empirical proof of convergence, and demonstrate the
e�ectiveness of the technique in achieving recognition per-
formance advantages by including formant features rather
than only using cepstrum features.

1. INTRODUCTION

Formant frequencies are known to be important in deter-
mining the phonetic content of speech sounds. Formants,
however, are not generally used as features for automatic
speech recognition as they may be ambiguous or badly de-
�ned and do not provide the necessary information for mak-
ing certain distinctions (such as identifying silence). A new
method of formant analysis has recently been presented [1]
which includes techniques to overcome the di�culties nor-
mally associated with extracting and using formant infor-
mation. Firstly, in cases of ambiguity, alternative sets of
formant frequencies are o�ered to the recognition process.
Secondly, a novel feature of the new formant analyser is
that each formant frequency estimate is assigned a measure
of con�dence. The con�dence measure is important be-
cause it allows for cases where formants are poorly de�ned
in the signal (e.g. fricatives) so that any single estimate
of frequency is likely to be unreliable. In such cases, it
is essential that the estimated frequencies are given little
weight in the recognition process, and that the recognition
decision is based on signal level and general spectral shape
information.

Whilst it is clear that the con�dence measures have im-
plications when the formants are used as features in speech
recognition, it is not obvious how to include such measures
in, for instance, an HMM based system. In this paper,
we present a method for interpreting con�dence estimates
which can then be rigorously incorporated into a probabilis-
tic model.

2. INTERPRETATION OF THE CONFIDENCE

MEASURE

The formant analyser produces a con�dence value for each
formant for each time frame. This value represents and

estimate of the con�dence in the accuracy of the formant
frequency measurement, and is derived automatically based
on spectral level and curvature. The con�dence values are
represented as standard deviations which, when squared,
can be thought of as variances of normal distributions cen-
tred upon the formant estimates. Interpreted in this way,
the formant analyser emits the parameters of a normal dis-
tribution representing its belief about the position of each
formant. When the con�dence is high, the variance is low,
representing strong belief in the estimate, and weak belief
outside it. At the other extreme, a low con�dence repre-
sents a high variance representing almost equal belief in all
possible frequencies. This belief oriented interpretation is
necessarily Bayesian.

3. MATHEMATICAL FORMULATION

3.1. Recognition

In conventional hidden Markov modelling, a state is as-
sumed to emit an observation, yt, according to some out-
put distribution. In this paper, we will assume that the
output probability distribution for state j is a single mul-
tivariate normal with mean �j and covariance matrix �j .
The required probability at time t is

Pr
�
yt �st

;�st

�
= N (yt;�st

;�st):

With the formant analyser, the observation comprises
both a formant vector, f t, and a con�dence vector, ct. The
actual feature vector, being the real values of the formant
frequencies, is unknown. The con�dence measure of the for-
mant analyser is assumed here to take the form of variance.

Given that we observe a distribution, the required ex-
pression for the output probability of the state is now

Pr
�
f t;Ct �st

;�st

�
;

where Ct is the (diagonal) matrix of formant variances.
The most informative way to proceed is to expand this ex-
pression thus

Pr
�
f t;Ct �st

;�st

�
=

Pr
�
f t Ct;�st

;�st

�
Pr
�
Ct �st

;�st

�
;

and then to make the assumption that the con�dence mea-
sure produced by the formant analyser is a reliable estimate,
hence Pr

�
Ct �st

;�st

�
= Pr (Ct) = 1, since the con�dence



measure is clearly independent of the output distribution
parameters.

It can now be argued that the model proposed so far
is mathematically the same as a noisy channel model, and
that it in practice it is easier to think of it in these terms.
The state output distribution emits a value, yt, which then
passes through a noisy channel with zero mean and covari-
ance Ct; f t is then the noisy observation. The expression
of interest is clearly

Pr
�
f t Ct;�st

;�st

�
;

which is the same as before, but without the prior on Ct.
To evaluate this expression, we must acknowledge that

the measured vector, f t, depends upon the unknown output
vector yt, and this vector must be integrated out:

Pr
�
f t Ct;�st

;�st

�
=Z

<n
dyt Pr

�
f t yt;Ct;�st

;�st

�
Pr
�
yt Ct;�st

;�st

�
;

where <n denotes the n-dimensional Euclidean space of pos-
sible observations. Observing some obvious independencies
and substituting normal distributions,

Pr
�
f t Ct;�st

;�st

�
=Z

<n
dytN (f t;yt;Ct)N (yt;�st

;�st):

This form is very intuitive, it just states that the output
probability should be evaluated for all possible values of
the feature vector, weighted by the formant analyser's belief
of each value. Given that N (f t;yt;Ct) � N (yt;f t;Ct),
the integral is the convolution of two normal distributions.
It can be shown that the variances simply add, the result
being

Pr
�
f t Ct;�st

;�st

�
= N (f t;�st

;�st +Ct):

So, to incorporate the formant variances in recognition,
we simply add the appropriate con�dence variance to that
of the output distribution. This result is intuitively pleas-
ing: For high con�dence (low variance), the usual expres-
sion applies, and for low con�dence the output distribution
widens to equally favour all output values.

3.2. Re-estimation

The re-estimation problem is to �nd a set of parameters
� which maximises the likelihood Pr (O �) of an observa-
tion sequence O = o1;o2; : : : ;oT . � consists of an S � S
transition probability matrix A, and means and covariance
matrices �i and �i; where i = 1; : : : ; S. Substituting the
pair ff t;Ctg for ot, the probability of the observation is

Pr (O �) =
X
s

as0

TY
t=1

ast�1stN
�
f t;�st

;�st +Ct

�
:

Following Liporace's interpretation of Baum's method
[2], we de�ne an auxiliary function Q(�;�):

Q(�;�) =
X
s

Pr (O; s �) log Pr
�
O; s �

�
;

which has the property that

Q(�;�) > Q(�;�)) Pr
�
O �

�
> Pr (O �) :

Expanding the � portion of Q and rearranging the �nal
term to isolate the parameters to be re-estimated,

Q(�;�) =

X
s

Pr (O; s �)�

"
log as0

+
TX
t=1

�
log ast�1st �

n

2
log(2�)�

1

2
log

���st +Ct

��
�

1

2

�
f t � �st

�0 �
�st +Ct

��1 �
f t � �st

��#
:

It is clear that the re-estimation equations for the tran-
sition probabilities will be unchanged from the standard
ones. The means and covariances, however, are likely to be
di�erent. First the means: Given that

@

@x
(y � x)0A(y � x) = �A(y � x)�A0(y � x)

for any general matrix A, and the covariance term is sym-
metric,

@Q(�;�)

@�j

=

�
X
s

Pr (O; s �)
X

ft: st=jg

�
�j +Ct

��1 �
f t � �j

�
;

Interchanging the order of summation and equating to zero,

TX
t=1

X
fs: st=jg

Pr (O; s �)
�
�j +Ct

��1 �
f t ��j

�
= 0;

Following Liporace, we would be able to pre-multiply by
the inverse of the matrix term. Here, however, Ct is frame
dependent and must remain. Rearranging yields the re-
estimation formula for the mean:

�j =

0
@ TX

t=1

X
fs: st=jg

Pr (O; s �)
�
�j +Ct

��1

1
A
�1

�
TX
t=1

X
fs: st=jg

Pr (O; s �)
�
�j +Ct

��1

f t:

We assume that the current value of the covariance ma-
trix can be used, instead of the re-estimate. We also note
that, in the fully multivariate case, this expression requires
a matrix inversion for each frame.

Now consider the covariance re-estimation. Liporace
di�erentiates with respect to the inverse, but here it is more



convenient to use the matrix itself:

@Q(�;�)

@�j

=

�
1

2

X
s

Pr (O; s �)
X

ft: st=jg

(
@

@�j

log j�j +Ctj

+
@

@�j

�
f t � �j

�0 �
�j +Ct

��1 �
f t � �j

�)
:

Taking each term separately,

@

@�j

log j�j +Ctj = (�j +Ct)
�1

:

Strictly, when di�erentiating with respect to a symmetric
matrix, the o� diagonal elements of the result should be
doubled [4]. In this case, however, this result is to be com-
bined with another where the same e�ect happens, and it
is both consistent and more readable to `ignore' this e�ect.
Liporace's derivation omits this caveat, though his results
are valid for the same reason. It can be shown with refer-
ence to [3] that

@

@A
x
0(A+B)�1

x = �
�
(A+B)�1

�0
xx

0 �(A+B)�1
�0
:

So, denoting f t��j by x, interchanging the order of sum-
mation as before and equating to zero yields

TX
t=1

X
fs: st=jg

Pr (O; s �)
h
(�j +Ct)

�1

� (�j +Ct)
�1
xx

0(�j +Ct)
�1

i
= 0: (1)

At this stage, it is clear that �j cannot be isolated, and
it is necessary to make an approximation. Two alternative
approximations are proposed, as described below.

3.2.1. Method 1

Equation 1 can also be written,

TX
t=1

X
fs: st=jg

Pr (O; s �)
h

(�j +Ct)
�1
�
�j +Ct � xx

0� (�j +Ct)
�1

i
= 0:

We now assume that Ct is independent of time for a given
state, that is, it can be assumed constant for the duration
of the state. This approximation is not unreasonable be-
cause the con�dence with which the formant frequencies
are estimated will generally be similar for all the feature
vectors corresponding to any one model state. The two in-
verse terms can now be brought outside the summation,
and the expression can then be pre- and post-multiplied by
the inverse of those terms leaving a single instantiation of
�j :

TX
t=1

X
fs: st=jg

Pr (O; s �)
�
�j +Ct � xx

0
�
= 0:

Rearranging,

�j =

TX
t=1

X
fs: st=jg

Pr (O; s �)
�
xx

0 �Ct

�
TX
t=1

X
fs: st=jg

Pr (O; s �)

:

This approximation appears to have a problem: Where Ct

is large, the term in square brackets will not be positive
de�nite, which is one of the conditions cited by Liporace
for the re-estimation to be valid. A remedy is to simply
ignore the contribution of frames for which this term is not
positive de�nite, that is, the sum of the eigenvalues is not
positive. The e�ect of this is that the system is not trained
on low con�dence frames, which is entirely reasonable. For
states where one or more frame elements are always low
con�dence, we suggest that this will be true in recognition
too, and hence the Ct term will dominate there also. In the
particular case where the covariance is assumed diagonal,
the individual elements of the term in square brackets can
be handled individually.

3.2.2. Method 2

Starting again from equation 1, notice that the �rst term
in the squares brackets can be written

(�j +Ct)
�1 = �

�1

j

�
I +Ct�

�1

j

��1

: (2)

Hence, by substituting equation 2 into equation 1, and pre-
and post-multiplying both sides by �j , a term in �j can be
isolated. This means that the equation can be rearranged
thus:

�j =0
@ TX

t=1

X
fs: st=jg

Pr (O; s �)
�
I +Ct�

�1

j

��1

�j

1
A
�1

�
TX
t=1

X
fs: st=jg

Pr (O; s �)

�j(�j +Ct)
�1
xx

0(�j +Ct)
�1
�j :

(3)

If it is assumed that �j terms on the right hand side can
be replaced by their previous values, then equation 3 con-
stitutes a re-estimation equation for �j .

4. COROLLARY

The problem as described is applicable to any feature set
which is subject to additive, time varying Gaussian noise. A
particular special case is that where the uncertainty (noise)
can be assumed constant with time. Practically, this means
that C is no longer dependent upon t, and certain matrix
terms in the re-estimation equations become independent
of the summation and cancel. In particular, the �rst re-
estimate of the covariance above ceases to be an approxi-
mation, and the re-estimate of the mean reverts to the same
as that for the conventional noiseless case.



5. EXPERIMENTS

5.1. Method

The new method for incorporating formant con�dence mea-
sures in both training and recognition was tested using the
same speaker-independent connected-digit recognition task
with three-state phone models as was used in earlier studies
[1]. As with the previous experiments, the baseline feature
set comprised the �rst eight mel-cepstrum coe�cients and
an overall energy feature. The performance of this feature
set was compared with one in which coe�cients 6, 7 and 8
were replaced by three formant features for describing �ne
spectral detail. In the case of the formant features, the con-
�dence measures were incorporated �rst in recognition and
then also in training, testing both of the approximations
suggested in the previous section for the re-estimation of
the model variances. For both training algorithms, it was
veri�ed experimentally from the training-set probabilities
that the re-estimation process converged after a few iter-
ations. For all model sets, a total of ten iterations were
performed before testing the models in recognition.

Alternative formant sets arising from labelling ambigu-
ity were optionally accommodated in training and recog-
nition, simply by choosing the formant set which gave the
highest HMM emission probability for each frame and model
state. Results using the con�dences and alternative formant
sets were compared with those obtained when no special
treatment was given to the formant features.

5.2. Results and Discussion

From the results shown in Table 1 it can be seen that the for-
mant features gave very poor performance unless the degree
of con�dence in their measurement accuracy was taken into
account. When the formant features were not given special
treatment, there were serious problems with insertion er-
rors. These errors were caused by mismatches between the
formant frequencies in the non-speech models with those
measured for the non-speech regions of the test data. These
errors disappeared when the con�dence measure was incor-
porated in recognition.

A small additional bene�t was obtained by also incorpo-
rating the con�dence measure in training, with very similar
results being obtained for the two suggested approaches to
training the model variances. In all cases, further small
improvements in recognition performance were obtained by
including alternative formant sets. The lowest error-rate of

Model Set %Subs. %Del. %Ins. %Err.
8 cepstrum features+energy 2.8 1.0 0.2 4.0

5 cepstrum features+energy+3 formants 5.2 1.0 10.2 16.4
Add formant con�dence measure (recognition only) 2.1 0.7 0.2 3.0
Also include second choice formants in recognition 2.1 0.4 0.4 2.9
Add con�dence measure in training (method 1) 2.0 0.6 0.2 2.8

Also include second choice formants (training and recognition) 1.9 0.6 0.1 2.6
Add con�dence measure in training (method 2) 2.0 0.6 0.2 2.8

Also include second choice formants (training and recognition) 1.8 0.6 0.1 2.5

Table 1: Connected-digit recognition performance for di�erent feature sets.

2.5% that was achieved with the formants demonstrates a
substantial improvement over the �gure of 4.0% that was
obtained when using only mel-cepstrum features, for the
same total number of features.

These digit-recognition experiments have provided a good
basis for initial comparisons, and experiments are now in
progress to evaluate performance on the more demanding
task of phone recognition using the TIMIT database.

6. CONCLUSIONS

We have shown that formant frequency estimates with con-
�dence levels can be interpreted probabilistically, and that
this interpretation leads to theoretically justi�able variants
of the standard HMM recognition and re-estimation equa-
tions. Further, the theoretical results have been evaluated
experimentally and shown to work in practice. Consider-
able recognition performance advantages have been demon-
strated from incorporating formant features in this way, in
comparison with using only cepstrum features.

It is planned to incorporate the formant representation
into a segmental modelling paradigm to model formant tra-
jectories, and then to progress towards developing an ap-
propriate underlying model of time evolving speech charac-
teristics.
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