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ABSTRACT

We address the problem of the estimation and identification of
real sinusoids in white Gaussian noise using a correlation-based
method. We estimate a partial covariance sequence from the data
and seek a representation of thesenew observations as a super-
position of a small number of cosines chosen from a redundant
basis and the white noise contribution. We propose to minimize
a quadratic program in order to choose a parsimonious decompo-
sition among the many that allow the reconstruction. We develop
optimality conditions for the criterion that can be geometrically
interpreted and present a dual criterion that has an appealing phys-
ical interpretation. Some simulated examples are also presented to
show the excellent performance in resolution of the approach.

1. INTRODUCTION

The problem of estimating the frequencies of multiple sinusoids
from noisy measurements has received considerable attention for
many years. It is a major problem with applications in a number
of different fields.

We consider here the very specific case where the process can
be modeled as a sum of real sinusoids in additive white noise and
propose to estimate the white noise power and the parameters (am-
plitude and frequency) of the sinusoids as well as their number.

We confine our study to the case where the number of data is
rather small (of the order ofT = 100) and the signal-to-noise ratio
(SNR) is quite low, below10dB.

The major difficulties that one encounters are then :
� the detection of a weak isolated sinusoid,
� the resolution/separation of two closely spaced sinusoids,
� the detection of a weak sinusoid hidden by a stronger one.

In this paper we focus our attention on the resolution problem.

2. THE PROBLEM

We consider the following noise corrupted sinusoidal signal:
y(t) = s(t) + e(t) (1)

with

s(t) =

pX
i=1

Ai cos(2�fi + �i); fi 2]0; 1=2[ (2)

wheree(t) is a zero mean white Gaussian noise with variance
�2 and�i are independent random variables uniformly distributed
over [0; 2�]. This insures that the processs(t) is stationary. We
address the problem of the estimation of the number of sinusoidsp
and simultaneously the identification of�2, the amplitudesAi and
the normalized frequenciesfi from a set of datay(t) of lengthT .

The covariancesrk of y(t) satisfy :

rk = E(y(t)y(t+ k)) =

pX
i=1

A2
i

2
cos(2�fik) + �2e�k

We estimateK of these covariances and denote the so-obtained
vector of estimateŝr :

r̂k =
1

T � k

T�kX
t=1

y(t)y(t+ k) (3)

r̂ has, asymptotically, a Gaussian distributionN (r;�). An
expression of� can be found in [2]:

�ij =
1

T
�4�i�j +

1

T � i
�4�i;j

+
1

T � i
2�2
j�i +

T � j � i

(T � i)(T � j)
2�2
i+j

wherej � i and
i = ri � �2�i.
Given thisK-dimensional vector̂r, we want to reconstruct it

as a linear combination of similar covariance-vectors associated
with sinusoids and the contribution of the white noise. LetA be
theK �N matrix whose last column is the covariance vector as-
sociated with white noise and whose other ones are covariance-
vectors corresponding to sinusoids at equispaced (angular) fre-
quencies!n.

A =

0
BBBB@

1 : : : 1 1
cos!1 : : : cos!N�1 0
cos 2!1 : : : cos 2!N�1 0

...
...

...
cos(K � 1)!1 : : : cos(K � 1)!N�1 0

1
CCCCA

We discretize uniformly the frequency domainf 2]0; 1=2[ with
a steph = :5=N . We thus have the angular frequencies ranging
from !1 = 2�h to !N�1 = � � !1. We will comment on the
choice of the steph later on, but we will always haveN � K,
which means that the constrained linear system :

r̂ = AX; X � 0 (4)

will, in general, have an infinite number of solutions. The set
of solutions is the intersection of a linear variety and the positive
orthant. Among them, we seek a solution withp + 1 or 2p + 1
positive components, an extremely small number when compared
toN .

Note that we will also normalize the Euclidean norm of the
columns ofA to one. It is easy to check that any subset ofK
columns ofA are linearly independent.



3. THE CRITERION

The way we choose to obtain a sparse solution to the constrained
linear system (4) is to solve :

min
X
kAX � r̂k2��1 + �kXk1 X � 0 (5)

wherekXk2Q stands forXTQX, kXk1 denotes thè1-norm of
X, which is equal to the sum of the components sinceX � 0, and
� is positive parameter which has to be tuned. This is a quadratic
program [3]
In the following we will note ~A = ��1=2A and ~̂r = ��1=2r̂.
This transformation whitens the estimation errors inr̂ and makes
all theK linear equations~AX = ~̂r equally valid and independent,
in a statistical sense.
If � = 0, the value of the criterion at the optimum is zero, there are
many non-sparse solutions. If� is very large, we will see below
that the solution of (5) is attained atX� = 0. Between these two
extreme cases one can expect to find a range of values of� for
which the optimum solutionX� will have only a small number of
non-zero components.

Generically, each true frequency in (2) falls between two points
of the frequency grid and to reconstruct exactly its contribution in
r or r̂ a large number of columns ofA are needed. By tuning�,
we allow for a more or less approximate reconstruction. We seek
a value of� which is such that each true cosine vector is recon-
structed using its two neighbors inA yielding a weighting vector
with around2p positive weights plus one weight for the noise con-
tribution. In fact, the additive regularization term�kXk1 in the
criterion not only allows for these reconstruction errors but it also
takes care of the estimation errorsr̂ � r.

For such an optimal choice of�, the solutionX� has thus
2p + 1 positive components, with one component for the noise
variance andp pairs of neighboring components each associated
with one sinusoid. The frequency estimatef̂i is obtained by linear
interpolation of the two columns frequencies and the powerÂi is
the sum of the two weights. In fact, thè1 norm term creates a
bias which has to be corrected, but we will discuss this issue later
on. The number of sinusoids is given by the number of significant
pairs of non-zero weights.

4. THE OPTIMALITY CONDITION OF THE
QUADRATIC PROGRAM

4.1. The optimality condition
Let us rewrite the quadratic program as :

min
X
k ~AX � ~̂rk22 + �1TX, X � 0

where1 is the vector[1; : : : ; 1]T. Its Lagrangian is then :
`(X;�) = k ~AX � ~̂rk22 + �1TX � �TX; � � 0

First order necessary conditions are (cf [3]):

r`(X;�) = �2AT(r̂ �AX) + �1T � �T = 0

�TX = 0 X � 0; � � 0

The second equation�TX = 0, which is a sum of posi-
tive terms, implies that in each term eitherXi or �i is equal to
zero. Denoting thenX

�
the vector containing the non-zero com-

ponents ofX� and ~A the associated columns of~A, the equations
inr`(X;�) = 0 associated with� = 0 yield :

~A
T

(~̂r � ~AX
�
) = ~AT(~̂r � ~AX�) =

�

2
1

Rewriting this relation, we get the following expression for non-
zero components of the solutionX

�
of the quadratic program:

X
�
= ( ~A

T
~A)�1 ~A

T
~̂r � �=2( ~A

T
~A)�11 (6)

which would allow to compute the optimum if the indices of the
non-zero components were known.

The zero components of the optimum are associated with the
non-negative components of�. If �j � 0, we get then from
r`(X;�) = 0

~aTj (~̂r � ~AX
�
) = ~aTj (~̂r � ~AX�) � �=2 8aj =2 A

We can summarize both conditions in

~AT(~̂r� ~AX�) � �=2 (7)

where equality holds for the non-zero components ofX.
We present in the appendix some further developments which

highlight some other aspects of the criterion and justifies its inter-
est from a physical point of view.

4.2. A geometrical interpretation
ReplacingX

�
in (7) by its expression (6) leads to :

~aTj ~A( ~A
T
~A)�11 � 1 for aj =2 ~A

With d = ~A( ~A
T
~A)�11, the last relation, and thus (7), becomes :

~aTj d � 1 (8)

This condition has the following geometrical interpretation :
the vectord defines a hyperplane that separates the columns present
in the scenario (those inA) from the others, for the the true columns
~a
T
j d = 1 while for all the othersaTj d � 1.

In the simple case where there is no noise, a vectord defin-
ing such a separating hyperplane is easily obtained from the the-
orem by Caratheodory used to obtain the Pisarenko harmonic re-
trieval method. It is quite easy to build a polynomial which is
equal to zero for the few frequencies that one wants to isolate
and different from zero for any other frequency. For the case of
a single sinusoid at angular frequency!1, this polynomial is :
P (z) = z2� 2 cos!1z+1. Evaluating now the squared modulus
of this polynomial and rearranging terms the vector defining such
a separating hyperplane is, for instance :

dT = [�2 cos2 !1; 4 cos!1; � 1; 0; 0; ::; 0]

In the case of several sinusoids the same method yields a separat-
ing hyperplane as long as2p < K. This indicates that, for our
problem of sinusoids in noise, aseparating hyperplanealways ex-

ists. This however does not mean thatd = ~A( ~A
T
~A)�11 defines

such a hyperplane.

4.3. One sinusoid and white noise
Let us consider the very simple case where :

r = ai + ��

with � = [1; 0; : : : ; 0]T the column ofA associated with the white
noise. This is the case of one sinusoid in white noise where more-
over the frequency of the sinusoid is the i-th point of the grid. Ide-
ally we then seek a value of the parameter� that yields an optimal
solutionX� of our criterion having just two non-zero components,



the components of the columnsai and�. Defining then the matrix
A asA = [ai; �], one can easily check that the vectord in (8)
becomes :

d = ([ai; �]
T[ai; �])

�1[1; 1]T =
ai + �

1 + aTi �

so that :

aTj d =
aTj ai +

1
kajk

1 + 1
kaik

It is now easy to check that indeed this vectord is such thataTi d =
�T d = 1 andaTj d < 1 for j 6= i. After some further develop-
ments, which we cannot include due to limited space, this allows
to establish that, at least for this simple case, there always exists a
range of values of� that yield a solution of (5) with exactly two
non-zero components, the two expected ones.

One can similarly show thataTj d < 1 holds for one source
between two columns ofA, i.e. the same conclusion is valid for
an arbitrary sinusoid in white noise.

5. SIMULATION RESULTS

5.1. The complete procedure
We consider the signal composed of sinusoids and white noise (1).
We estimate itsK first covariances (3) and we solve the quadratic
program (5) for one or several values of�. For a well chosen�,
we then get a sparseX� with one non-zero component for the
white noise and a few pairs of non-zero components, each one
corresponding to one sinusoid. We order these pairs by decreas-
ing powers. To choose the order of the model, we first select
the first pair, then the first two pairs, . . . , and ineach case we
solvemin

X
kA:X � r̂k2 to get the unbiased corresponding solu-

tion. From these unbiased values ofX we deduce the frequency
estimatesf̂i of the sinusoids as the weighted average of the fre-
quencies of the two columns and the corresponding power as the
sum of both power. We then apply an Akaike-like test by taking
kr̂ � r(��p̂)k

2
��1

as the maximum likelihood part of the test.

5.2. Tuning the parameters
To completely define our criterion we have two parameters to tune,
� and the discretization steph of the normalized frequencies, that
indirectly fixes the number of columns inA.

One can show that, provided the scenario isseparablein the
above mentioned sense, there is a range of� such that only the
true columns have non-zero weights. One can show [1] that one
has to fix� of the order of the standard deviation of the estimation
errors. Since we whitened these errors by premultiplying bothA

andr̂ by �̂�1=2, this means that� should be taken of the order of
one. In the simulations below, we generally take� = 2.

The discretization steph has to be chosen small enough to al-
low the method to attain the Cramer Rao bounds. On the other
hand, one can show (cf. [1]) that the interpolation procedure al-
lows to gain an order of magnitude i.e. that for a steph the accu-
racy in the estimate is of orderh2. We thus takeh, in the simula-
tions below, reasonably small and adapt it to the accuracy we want
to achieve.

5.3. The results
To evaluate the performances of the proposed procedure, we con-
sider the following situation:

y(t) = A1 cos(2�f1t) +A2 cos(2�f2t) + e(t)

�2 = E(e(t)2) = 1

t = 1; : : : ; T

SNRi = A2
i =2�

2

We systematically perform 50 independent realizations. We give
the mean and the variance (w.r.t. to the true parameters) of the es-
timated parameters, and we indicate the Cramer Rao lower bounds
(CRB), which can be found in [5] for example.

We first consider the example treated in [6], which is quite
an easy scenario that the periodogram could solve at high SNRs.
Therefore we restrict our simulations to the case of lower SNRs
0dB (table 1) and -10dB (table 2). Phases are chosen following
[6]: �1 = 1 and�2 = 0, even if we don’t estimate them. We can
note that our procedure achieves the Cramer Rao bounds in cases
where the SNRs are 20dB worse than in [6].

Mean V ariance CRB
A1 = 1:41 1:43 4:2 10�3 4:0 10�3

A2 = 1:41 1:42 3:6 10�3 4:0 10�3

f1 = :1 :99985 4:3 10�9 2:5 10�9

f2 = :125 :12502 4:2 10�9 2:5 10�9

�2 = 1 :99 1:0 10�3 4:0 10�3

Table 1: SNR=0dB, T=500,� = 2, N=500, K=100

Mean V ariance CRB
A1 = :447 :439 5:0 10�3 4:0 10�3

A2 = :447 :441 4:1 10�3 4:0 10�3

f1 = :1 :09966 1:56 10�7 2:43 10�8

f2 = :125 :12478 1:26 10�7 2:43 10�8

�e 1:00 1:0 10�3 4:0 10�3

Table 2: SNR=-10dB, T=500,� = 10, N=2000, K=100

We now consider more difficult scenarios with five times less
data (T = 100) and closer frequencies. In this case ([2]), the peri-
odogram resolves equipowered sinusoids whose frequency separa-
tion is of the order of�f = 1

T
= 10�2 whereas we will consider

frequencies separated by�f=2 in the examples bellow. In the fol-
lowing we take identical (zero) initial phases for the two sinusoids.
Our approach still achieves the CRB.

Mean V ariance CRB
A1 = 4:47 4:38 :33 :1
A2 = 4:47 4:35 :21 :1
f1 = :1 :0999 3:2 10�6 1:7 10�7

f2 = :105 :1051 4:7 10�7 1:9 10�7

�e = 1 1:00 2:1 10�2 2:0 10�2

Table 3: SNR=10dB, T=100,� = 5, N=5000, K=40

Finally in the table 5 we consider the case where the two sinu-
soids have not the same power, one at 0dB and the second one at
10dB, while keeping the frequency separation below�f = 1=T .

6. CONCLUSION

We have proposed here a new algorithm for the detection and esti-
mation of the parameters of sinusoidal signals in white noise. We



Mean V ariance CRB
A1 = 1:41 1:37 :13 :1
A2 = 1:41 1:32 :13 :1
f1 = :1 :0991 6:3 10�6 1:7 10�6

f2 = :105 :1056 3:2 10�6 1:9 10�6

�e = 1 1:00 6:4 10�3 2:0 10�2

Table 4: SNR=0dB, T=100,� = 5, N=2000, K=40

Mean V ariance CRB
A1 = 1:41 1:32 6:4 10�2 6:3 10�2

A2 = 4:47 4:07 2:15 10�2 6:1 10�2

f1 = :1 :0986 7:9 10�6 1:2 10�6

f2 = :107 :10707 5:9 10�8 1:3 10�7

�2 = 1 1:00 6:8 10�3 4:0 10�3

Table 5: SNR1=0dB, SNR2=10dB, T=100,� = 1, N=2000,
K=100

minimize a quadratic program that has a nice and appealing in-
terpretation in terms of conditions on the matched filter outputs
applied to the residues. The criterion is the sum of a quadratic
term and a regularization term including an`1 norm. It is easily
minimized using routines present in scientific libraries. The min-
imization of that criterion yields a parsimonious representation of
the observations.

We have derived optimality conditions for the quadratic pro-
gram that can be geometrically interpreted in terms of the exis-
tence of a separating hyperplane between the true components (si-
nusoids) and the other ones.

Simulation results allow us to assess the performance in reso-
lution of the approach show outstanding performances. We man-
age to separate two closely spaced sinusoids at very low SNRs.
The robustness of the approach to non-white noise is also very
good.

7. APPENDIX : THE DUAL CRITERION

Let us rewrite the quadratic program under the form :

min
X
kAX � bk22 + � 1TX s:t: X � 0 (QP )

with A, a(K �N) full rank matrix (N � K) and develop some
equivalent formulations. We will present a dual problem and estab-
lish relationships between the solution to the dual and the original
problem [7]. The expression of the dual is interesting because it
leads to an appealing physical interpretation. Since the problem
(QP) is convex, it is equivalent to :

max
��0

fmin
X
kAX � bk22 + � 1TX � �TXg (P1)

For a fixed positive�, the minimum inX satisfies :

2AT (AX � b) + �1+ � = 0

sinceATA is not full rank, one cannot drawX as a function of�
from this expression, one can however use it to express� in terms
of X and to eliminate� in (P1) to obtain the following equivalent
formulation :

max
X

�XTATAX + bT b

s:t: AT (b�AX) =
�

2
1�

1

2
�; � � 0

which, writingY = AX, yields the following dual problem :

min
Y
kY k2 s:t: AT (b� Y ) �

�

2
1 (D)

which is a minimum norm problem. To check that the solution
Y � of the dual actually leads to a solution of (QP) (the primal)
one verifies that the dual of the dual is nothing but (QP). Indeed
applying exactly the same steps as above to (D), one gets :

max
��0

fmin
Y
kY k2 + �T [ AT (b� Y )�

�

2
1] g

the minimum inY now satisfies :
2Y +A� = 0

and replacingY by its expression, one obtains :

max
��0

�
1

2
fkA�� bk2 + �1T�g �

1

2
bT b

which is equivalent to (QP). The solutionX� of (QP) is thus the
Lagrange multiplier vector of the dual and from the optimumY �

of the dual one can indeed deduceX� : x�j = 0 if the j-th con-
straint in the dual is inactive i.e. ifaTj (b� Y �) < �

2
andx�j � 0

if the j-th constraint in the dual is active.
We have thus shown that minimizing (QP) for a given� amounts

also to solve :

min
X
kAXk2 s:t: AT (b�AX) �

�

2
1 (D)

i.e. to subtract from the observations inb a quantityAX with least
`2 norm such that when applying the correlator (matched filter) to
the residues(b�AX) the output never exceeds�=2. This is a quite
sensible way to obtain a solution that is certainly much better than
in matching pursuit type algorithms [4] that work in an iterative
way and subtract successively the best matching component from
the current residues until, for instance, all the residues are below a
fixed threshold. Here the same is somehow achieved in one single
shot.
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