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ABSTRACT

In wireless communication scenarios, multipath propagation from
local scatterers in the vicinity of mobile sources may cause an-
gular spreading as seen from a base station antenna array. This
paper studies the effects of such local scattering on direction of ar-
rival (DOA) estimation with the MUSIC and ESPRIT algorithms.
Previous work has considered rapidly time-varying scenarios, and
concluded that local scattering has a minor effect on DOA estima-
tion in such scenarios. This work considers the case in which the
channel is time-invariant during the observation period. The distri-
bution of the DOA estimates is derived, and the results show that
local scattering has significant impact on DOA estimation in the
time-invariant case. In addition, numerical examples are included
to illustrate the analysis, and to demonstrate that the results may
be used to formulate simple estimators of angular spread.

1. INTRODUCTION

The use of antenna arrays at base stations in wireless communica-
tion systems has gained much interest. By using multiple antennas,
the idea is to utilize the spatial dimension more efficiently. Among
the possibilities are improved range, diversity against fading, inter-
ference suppression, and spatially selective transmission to reduce
interference in the downlink.

For macro cells in rural and suburban environments with an-
tennas placed above roof-tops, away from potential multipath re-
flectors, it may be reasonable to assume that most of the energy
incident on the array is from local scattering near the mobile. Lo-
cal scattering models were first used in studies aimed at determin-
ing the separation required between two antennas to get effective
spatial diversity, i.e., sufficiently low fading correlation [1]. It is
assumed that there is no direct line-of-sight between the mobile
user and the base station, and the signal is modeled as being due to
a large number of independent and identically distributed waves.
As the scatterers are local to the mobile, the angular distribution
may be relatively narrow. To generalize Rayleigh fading narrow-
band channels to the multiple antenna case, a similar approach has
been taken in [2, 7, 10, 11]. A large number of angular distribu-
tions have been proposed [1, 2, 4, 7, 10, 11]. In [4], the radius of
the local scattering area is estimated to be of the order of50� 100
wavelengths in a suburban area.

In [5], the bias and variance of DOA estimates for the case
where the channel varies very rapidly with time is studied. The
mobile is assumed to travel a distance large enough between each
snapshot, so that the channel realizations may be viewed as inde-
pendent from snapshot to snapshot. However, for a system operat-

ing in burst mode, like the well-known GSM system, the observa-
tion periods are short, and the array is sampled at symbol rate. The
time-variation of the channel between the snapshots may then be
neglected, and the analysis in [5] does not apply to this scenario.

This work studies the effects of local scattering on DOA es-
timation with two conventional algorithms, MUSIC [8] and ES-
PRIT [6]. The observation period is assumed short in relation
with the mobile speed, so that the channel may be modeled as
time-invariant. Finite sample effects and calibration errors are ne-
glected, and only the effect of local scattering is considered, which
from a DOA estimation point of view may be regarded as a model
error. The angular spread is assumed to be small, and the spatial
signature is approximated as a linear combination of the nominal
array response due to a plane wave and its derivative. The dis-
tributions of the DOA estimates are then determined by invoking
the Central Limit Theorem to approximate the coefficients of the
linear combination as complex Gaussian random variables. The
distribution of the estimates may then be determined.

2. DATA MODEL

It is assumed thatd mobile sources are present emitting narrow-
band signals. The time dispersion introduced by the multipath
propagation is assumed to be small in comparison with the recip-
rocal of the bandwidth of the emitted signals. For an array ofm
antennas, the observations are modeled as

x(t) = Vs(t) + n(t) : (1)

The ith column ofV, denotedvi, represents the spatial signa-
ture of the signalsi(t) transmitted by useri. The vectors(t) =

[s1(t); � � � ; sd(t)]T contains the signals of all users. The noise,
n(t), is assumed to be spatially white, Efn(t)n�(t)g = �2I, and
the signals spatially non-coherent in the sense that Efs(t)s�(t)g =
S > 0. In contrast to [5],V is modeled as constant during the ob-
servation period. The spatial signaturevi is modeled as

vi =

NiX
k=1

�ika(�i + ~�ik) ; (2)

where�ki is the (complex) amplitude of thekth scattered signal,
a(�) is the response of the array to a single unit amplitude sig-
nal with DOA �, andNi is the total number of local scatterers
for the ith source. The quantities�i and�i + ~�ik represent the
nominal DOA of theith user, and the arrival angle of thekth scat-
tered signal respectively. The phenomenon is illustrated in Fig-
ure 1. The assumption of local scattering near each user means
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Figure 1: Local scattering

that4i in Figure 1 is assumed to be small. Define the gradient
d(�) = @a(�)=@� so that a first order Taylor series expansion of
(2) yields

vi �
NiX
k=1

�ik
�
a(�i) + ~�ikd(�i)

�
= 
ia(�i) +  id(�i) (3)

where


i =

NiX
k=1

�ik ;  i =

NiX
k=1

�ik~�ik : (4)

The framework for additive model errors proposed in in [9] will
be used. To fit the approximate spatial signature model of (3) into
this framework, the gain
i will be associated with theith signal,
and the received signal is modeled as

x(t) �
h
A(�) + ~A

i
�s(t) + n(t) ; (5)

where

~ai =
 i

i
d(�i) : (6)

The matrix� is a diagonal matrix,� = diagf
1; : : : ; 
dg, and

A(�) = [a(�1); : : : ; a(�d)] ; ~A = [~a1; : : : ; ~ad] :

3. A FIRST-ORDER ERROR ANALYSIS

In this section, a first-order error analysis is carried out. Finite
sample effects and calibration errors are not considered. Thus,
only the effects of angular spreading are studied. The perturba-
tion of the covariance matrix caused by the angular spreading is
first related to the perturbation of the estimated signal and noise
subspaces. These results are then used to find the perturbation
of the estimated DOAs. For the case where the local scattering
cause no angular spreading, but only variations of the received
signal powers (fading), it holds that4i = 0 and ~�ik = 0 for
all i; k. The nominal covariance matrix of the observations,R =
Efx(t)x�(t)g, is then

R = A(�)�S��A�(�) + �2I : (7)

A basis for the nominal signal subspace may be defined from the
eigenvalue decomposition ofR,

R = Es�sE
�
s + �2EnE

�
n :

The estimates calculated with this covariance matrix will coincide
with the nominal DOAs. With angular spread, (5) applies, and the
sample covariance matrix is

R̂ =
h
A+ ~A

i
�S�

�
h
A+ ~A

i�
+ �2I ; (8)

whereA = A(�). The estimated basis for the noise subspace is
defined from the eigenvalue decomposition ofR̂:

R̂ = Ês�̂sÊ
�
s + ÊnÊ

�
n�

2 : (9)

To be able to make a perturbation analysis, it is assumed that the
angular spreading is small, so thatk ~Ak may be regarded as small.
As shown in [9], if terms that tend to zero faster thank ~Ak are
neglected, then the following holds:

ÊnÊ
�
na(�i) � �EnE�n~ai : (10)

Similarly, it is possible to show that

Ê
�
sEnE

�
n � E

�
sA

y� ~A�
EnE

�
n : (11)

3.1. The MUSIC Algorithm

The MUSIC algorithm [8] calculates the DOA estimates as thed
minimizing values of the cost function

V (�) =
a
�(�)ÊnÊ

�
na(�)

a�(�)a(�)
:

The DOA estimate of theith DOA calculated with MUSIC,̂�Mi ,
therefore satisfies

0 = V 0(�̂Mi ) ; (12)

whereV 0(�) = @V (�)=@�. An expression for̂�Mi ��i is obtained
via a first-order Taylor expansion, in which terms that tend to zero
faster than̂�Mi � �i are neglected. Using (10) andE�na(�i) = 0,

V 0(�i) � �2Re fd(�i)EnE�n~aig
a�(�i)a(�i)

and

lim
4i!0

V 00(�i) = �V 00(�i) =
2Re fd(�i)EnE�nd(�i)g

a�(�i)a(�i)
;

which gives the following first order expression for the error

�̂Mi � �i � � V 0(�)
�V 00(�)

� Re fd(�i)EnE�n~aig
d(�i)EnE�nd(�i)

: (13)

3.2. The ESPRIT-Algorithm

In this section, DOA estimation with a uniform linear array (ULA)
with elements separated� wavelengths and ESPRIT [6] is studied.
Let �̂i be theith eigenvalue of the matrix

	̂ = Ê
y
s1Ês2 ;

whereÊys1 = (Ê�s1Ês1)
�1
Ê
�
s1. The matriceŝEs1 and Ês2 are

given byÊs1 = J1Ês andÊs2 = J2Ês, with J1 = [Im�1 0] and
J2 = [0 Im�1]. Theith DOA estimate,̂�Ei , is

2�� sin �̂Ei = arg �̂i : (14)

Define�i as�i = exp (2�� sin �i), and recall that�i is the ith
eigenvalue of	 = E

y
s1Es2. As k ~Ak tends to zero,̂Es tends to

Es, and as shown in in [3], for small̂�i� �i, the following holds:

�̂Ei � �i � 1

2�� cos �i
Im

(
�̂i � �i
�i

)
: (15)



In [3], it is also shown, that if terms that tend to zero faster than
the retained terms ask ~Ak tends to zero are neglected, then

�̂i � �i � �
�
iEnE

�
nÊsE

�
sAei ; (16)

whereei is a column vector with theith element being one, and
the other zero. The vector��i is defined as

�
�
i = e

�
i (J1A)y

�
J2 � ej2�� sin �iJ1

�
: (17)

Using (11) and the facts that~AAy
EsE

�
sAei = ~ai, and��iEnE

�
n =

��i , (16) becomeŝ�i � �i � ��i ~ai. Substituting this into (15), fi-
nally yields

�̂Ei � �i �
Im

n
e
�
i (J1A)y

�
e�j2�� sin �iJ2 � J1

�
~ai
o

2�� cos �i
: (18)

4. DISTRIBUTION OF ESTIMATES

So far, the model error,~ai, has been considered deterministic but
small. As in [7, 10, 11], the number of scattered signals,Ni, is
assumed to be relatively large, and the rays are assumed to be in-
dependent and identically distributed (iid) with phases uniformly
distributed over[0; 2�[. It is then reasonable to approximate
i
and i in (4) as complex Gaussian random variables. Assume that
the power is normalized so that all rays have equal power,1=Ni,
and, as in [7] assume that~�ik, is uniformly distributed over the
interval [�4i;4i]. Then�ik = 1p

Ni

ej�ik with all �ik iid uni-

formly over[0; 2�[. Using (4), it is straightforward to verify that
i
and i are approximately independent complex Gaussian random
variables with mean zero and variances

Efj
ij2g = 1 ; Efj ij2g = 42

i =3 :

A reasonable modeling assumption is that the rays carrying differ-
ent source signals are independent. For this case,~ai and~ak are
independent fori 6= k, and from (13) and (18) it then follows that
the DOA estimates also to first order are independent. Combin-
ing the expression for the model error~ai as given in (6) with the
expression for MUSIC in (13) gives

�̂Mi � �i � Re

�
 i

i

�
: (19)

For the ESPRIT algorithm, combining (6) with (18) gives

�Ei � �i �
Im

n
e
�
i (J1A)y

�
e�j2�� sin �iJ2 � J1

�
d(�i)

 i

i

o
2�� cos �i

:

(20)

The estimates calculated with both algorithms will have the same
distribution, since the real and imaginary part of the ratio of two
independent complex Gaussian random variables have the same
distribution. Define the estimation error as~�i = �̂i � �i. Using
(19) and (20), it is then straightforward to derive the probability
density function (pdf) of the estimation error~�i as

f~�i (�) =
�2i

2 (�2 + �2i )
3=2

: (21)

For the MUSIC-algorithm, the parameter�i is

�Mi = 4i=
p
3 ; (22)

and for the ESPRIT algorithm, the parameter�i is

�Ei =
4ip
3

�����e
�
i (J1A)y

�
e�j2�� sin �iJ2 � J1

�
d(�i)

2�� cos �i

����� :
For a ULA and a single source it is easily shown that the param-
eters are equal,�Mi = �Ei = 4i=

p
3. To first order, the local

scattering will introduce no bias as Ef�̂Ei g � Ef�̂Mi g � �i. Fur-
ther, it is possible to calculate Ej~�ij, as

Ej~�ij � �i : (23)

The second moment is infinite since the approximations give a dis-
tribution whose tail does not decay sufficiently fast. Any practical
DOA estimator restricts it search over DOAs between[0; 360�[
and will of course not have infinite variance. The behavior is prob-
ably explained by the Rayleigh fading.

5. NUMERICAL EXAMPLES

In the examples, each source was modeled with multipath prop-
agation from30 iid local scatterers. Each scatterer had a fixed
amplitude, a random phase uniformly distributed over[0; 2�[, and
an angular perturbation from a uniform distribution of width24i.

In the first example, a ULA with six elements and a single
source with nominal DOA0� was considered. For this case the
estimated signal subspace is simply the spatial signature. The
DOA was estimated with MUSIC and ESPRIT for 2000 realiza-
tions of the spatial signature. In Figure 2, the average value of
j~�1j = j�̂1��1j is plotted for different values of41. The solid line
is the approximate expression for Efj~�1jg given by (23), which
for this case is41=

p
3 for both estimators. The empirical val-

ues obtained with MUSIC and ESPRIT agree well with theory for
small angular spread. The simulations indicate that ESPRIT gives
smaller estimation errors.

First Order Approximation
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Figure 2: Theoretical and simulated values of Ej~�1j.

In Figure 3, a histogram with 5000 DOA estimates calculated
with MUSIC is plotted. A six element ULA was considered, and a
single source with nominal DOA30� and angular spread241 =
5� was present. The solid line represents the relative frequencies
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Figure 3: Histogram of estimates compared with approximation.

predicted by the expressions in (21) and (22). The derived expres-
sions give a relatively good prediction of the pdf of the estimates.

In the last example, a noisy scenario was considered. Three
sources with nominal DOAs�45�, 0� and45� were present. All
sources had an average SNR of 10 dB measured at a single sen-
sor. A ULA with eight elements was used, and bursts of length
100 snapshots were collected. For each burst the spatial signa-
tures were generated as above and held constant during the obser-
vation period. The angular spreads, as seen from the array, were
241 = 5�, 242 = 1� and243 = 15�. The MUSIC algorithm
was used, and the MUSIC spectrum was only calculated for a re-
gion �20� around each nominal DOA. In this way, some of the
outliers which appear during fading dips are removed. A total of
5000 bursts were simulated, and the averaged DOA estimates were
�45:0�, 0:0�, and45:0�, which agrees with our previous results.
Also, (23), states that24i �

p
12Efj�̂i � �ijg. The sample mean

of the absolute value of the angular perturbations may be used to
form an estimate of the angular spread24i. Using all 5000 bursts,
the estimated spreads calculated in this way were4:8�,1:1�, and
13:54�. Finite sample effects probably add to the variations of the
DOA estimates, and this partially compensates for the discrepancy
between theory and experiments for larger spreads. Finally, a win-
dow of length100 was considered, meaning that only the estimates
from the last100 bursts were used. The sample mean was sub-
tracted from the estimates to estimate the angular perturbations.
The mean of the absolute value of the angular perturbations was
then calculated. By multiplying this sample mean by

p
12, an es-

timate of24i was calculated.In Figure 4, the transient behavior is
neglected, and the estimated angular spreads are plotted. The solid
lines represent the true values for24. The DOA estimates may
thus be used to calculate a rough estimate of the angular spread.
Also, this agrees with the analysis of the MUSIC algorithm that
the DOA estimates to first order are uncorrelated, as the presence
of multiple sources does not affect the angular spread estimates.

6. SUMMARY

The effects of local scattering on DOA estimation with the MUSIC
and ESPRIT algorithms were studied. The analysis considered
only the effect of the local scattering and neglected finite sample
effects and calibration errors. The angular spread was assumed to
be small, so that the spatial signature could be approximated as a
linear combination of the nominal array response due to a plane
wave and its derivative. The coefficients of the linear combination
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Figure 4: Simple tracking of angular spread.

were approximated as complex Gaussian, and the distributions of
the DOA estimates were then derived. The results show that lo-
cal scattering has significant impact on DOA estimation for time-
invariant scenarios. Numerical examples were included to illus-
trate the analysis, and to demonstrate that the results may be used
to formulate simple estimators of angular spread as well.

7. REFERENCES

[1] F. Adachi, M.T. Feeney, A.G. Williamson, and J.D. Parsons.
Cross Correlation Between the Envelopes of 900 MHz Sig-
nals Received at a Mobile Radio Base Station Site.IEE Pro-
ceedings F, 133(6):506–512, Oct. 1986.

[2] B.G. Agee, K. Cohen, J.H. Redd, and T.C. Hsia. Simulation
Performance of a Blind Adaptive Array for a Realistic Mo-
bile Channel. InProceedings IEEE Vehicular Technology
Conference, pages 97–100, May 1993.

[3] A. Kangas, P. Stoica, and T. S¨oderström. Finite Sample and
Modelling Error Effects on ESPRIT and MUSIC Direction
Estimates.IEE Proceedings F, 141(5):249–255, Oct. 1994.

[4] W.C.Y. Lee.Mobile Communications Design Fundamentals.
Wiley, 2nd edition, 1992.

[5] R. Moses, T. S¨oderström, and J. Sorelius. Effects of
Multipath-Induced Angular Spread on Direction of Arrival
Estimators in Array Signal Processing. InIEEE/IEE Inter-
national Workshop on Signal Processing in Multipath Envi-
ronments, April 1995.

[6] R. Roy and T. Kailath. ESPRIT - Estimation of Signal
Parameters via Rotational Invariance Techniques.IEEE
Transactions on Acoustics, Speech, and Signal Processing,
37(7):984–995, July 1989.

[7] J. Salz and J.H. Winters. Effect of Fading Correlation on
Adaptive Arrays in Digital Mobile Radio.IEEE Transactions
on Vehicular Technology, 43(4):1049–1057, Nov. 1994.

[8] R.O. Schmidt. A Signal Subspace Approach to Multiple
Emitter Location and Spectral Estimation. PhD thesis, Stan-
ford University, Nov. 1981.

[9] A. Swindlehurst and T. Kailath. A Performance Analysis of
Subspace-Based Methods in the Presence of Model Errors,
Part I: The MUSIC Algorithm.IEEE Transactions on Signal
Processing, 40(7):1758–1773, July 1992.

[10] T. Trump and B. Ottersten. Estimation of Nominal Direction
of Arrival and Angular Spread Using an Array of Sensors.
Signal Processing, 50:57–69, 1996.

[11] P. Zetterberg and B. Ottersten. The Spectrum Efficiency
of a Base Station Antenna Array for Spatially Selective
Transmission.IEEE Transactions on Vehicular Technology,
44(3):651–660, Aug. 1995.


