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ABSTRACT

This paper deals with the e�ect of sampling the continuous
observations on parameter estimation errors. In particu-
lar, we study the problem of estimating the time of arrival
(TOA) of a continuous, deterministic signal in noise. For
this problem, the sampling procedure transforms the con-
tinuous parameter space into a discrete one, resulting in
inherent estimation errors. We introduce a general tool for
evaluating the achievable performance for any parameter
estimation problem at a given sampling rate. For TOA es-
timation with a Gaussian-shaped signal, we show that one
can undersample with a factor up to 3 times the Nyquist
rate with average TOA estimation performance reduction
of less than 3dB.

1. INTRODUCTION

Given a continuous process x(tj�), 0 � t � T , one is in-
terested in estimating the parameter vector �. In practice,
most estimation procedures are implemented by DSP tech-
niques, so the �rst step is to sample the received data. In-
deed, if one samples at the Nyquist rate, it is guaranteed
that the achievable estimation performance when using con-
tinuous or sampled data is the same. However the Nyquist
rate is not necessarily the lowest sampling rate to satisfy
this condition. In a given parameter estimation problem,
the undersampled data can, at least theoretically, be a suf-
�cient statistic. Moreover, for achieving a given estimation
accuracy, one may be able to undersample even more so,
resources as system complexity and costs (e.g., memory re-
quirements) can be used more e�ciently. In this paper we
study the achievable accuracy of a given parameter estima-
tion DSP system as a function of the sampling rate, as well
as of the problem limitations (e.g., signal to noise ratio -
SNR). We develop a Cramer-Rao type bound on the esti-
mation error. We demonstrate the results by considering
the problem of estimating the time of arrival of a deter-
ministic signal in noise. This important problem which is
inherent in many practical applications (e.g., [3]) is of par-
ticular interest since the sampling introduce quantization
error to the estimate.

The paper is organized as follows: In section 2 we in-
troduce the basic idea of how to handle the problem. In
section 3 we refer to the speci�c application of TOA esti-
mation. First we provide an expression for an approximate,

Cramer-Rao type bound on the TOA estimation error in a
given sampling rate when all the other nuisance parameters
are known. Then, we illustrate the results by considering a
speci�c example. We conclude section 3 by discussing the
e�ect of unknown nuisance parameters. The last section is
devoted to conclusions and discussion of the results.

2. THE BASIC IDEA

We assume that the continuous process is �rst �ltered by
an arbitrary linear �lter of a given bandwidth W, and then
is sampled at the appropriate Nyquist rate, fs = 2W . We
derive the Cramer-Rao lower bound (CRLB) on the estima-
tion error of the parameter vector � based on the sampled
data. This CRLB indicates the achievable estimation per-
formance for � using the continuous data at the output of
the arbitrary �lter used, whose impulse response is denoted
by h(t). The achievable performance depends on the spe-
ci�c �lter used, h(t), as well as on the bandwidth W and
on the probability density function (p.d.f) of the received
data, f(x(t)j�).

To derive a bound on the achievable performance at a
given sampling rate fs = 2W and on f(x(t)j�) only, we
need to eliminate the dependence of the resulting CRLB on
h(t). To do so, we minimize the CRLB with respect to h(t)
over the space of all linear �lters with a given bandwidth
W, 
W . That is,

LB(�jf;W ) =
min

h(t) 2 
W
CRLB(�jf; h(t))

= CRLB(�jf; h0(t)) (1)

where we use the notation LB(�jf;W ) for a lower bound
on the mean-square error (mse) of any unbiased estimate
on � from the data x(tj�) of p.d.f. f(x(t)j�) using a DSP
system with a sampling rate fs = 2W .

Note that while the bound LB(�jf;W ) is independent of
the estimation procedure used, it is theoretically achievable
(under asymptotic conditions) by the maximum likelihood
estimator (MLE) [7] which is applied to the signal at the
output of the linear �lter h0(t) 2 
W . Applying the MLE
to the output of any other linear �lter h(t) 2 
W results
in mse which is not smaller than LB(�jf;W ). That is, in
general:

Cov(�̂jh(t)2
W ) � Cov(�̂jh0(t)2
W ) � LB(�jf;W ) (2)



The right hand equality holds for the case where the MLE
at the output of the �lter h(t) = h0(t) is applied. That is,
while developing a lower bound on the achievable estima-
tion procedure in a given sampling rate fs = 2W , we also
identify an optimal DSP estimation procedure. This proce-
dure is not unique since the MLE is not the only possible
DSP estimation procedure, but it suggests that h0(t) 2 
W
is the optimal pre-�lter for any DSP estimation procedure.

Note, however, that (2) holds for a given W � W0,
whereW0 is the bandwidth of the original continuous signal
x(t). The bound on the r.h.s. of (2) can be broken by
enlarging W up toW0, assuming all other statistical factors
(e.g., SNR) are kept the same.

Solving the minimization problem in (1) to �nd LB(�jf;W )
in a given problem is not an easy task. In [1] we have
been able to do so for the problem of estimating the arrival
time of a step-like signal in white, Gaussian noise and we
have presented a close-form simple expression for LB of (1).
In this special case, the bandwidth of the continuous data
is theoretically in�nite, so adding a �nite bandwidth con-
straint is not for reducing complexity, but a practical must.
Also, we have found that the optimal pre-�lter h0(t) which
is the Canny's �lter [2], is very well approximated by the
"mother wavelet" used for optimal sampling in the discrete
wavelet transform (e.g., [5]).

3. APPLICATION: ESTIMATING THE TIME OF
ARRIVAL OF A DETERMINISTIC SIGNAL

As in the classical modeling of the TOA estimation problem
[3,4,6], we assume a signal s(tj ) which is known up to a
set of p parameters (e.g., its amplitude), represented by  .
The problem is to estimate its time of arrival (TOA), t0,
from:

x(t) = s(t� t0j ) + n(t) ; 0 � t � T (3)

where n(t) is a zero mean, stationary Gaussian noise and
s(t) is a deterministic signal of bandwidthW0. The param-
eter vector to be estimated is � = [t0;  ]

T . We �rst consider
the case where the nuisance parameters vector  is known.

The CRLB for the estimation error of t̂0 from x(t) of
(3) satis�es [4]:

V arft̂0g � CRLB(t̂0js;  ; f) =
N0

2R T
0
( ds(tj )

dt
)2dt

(4)

where N0 =
�2n
W0

is the spectral density of the assumed white
noise process.

We proceed by assuming that the received signal x(t)
of (3) is pre-�ltered by a linear �lter of impulse response
hs(t) = 1

s
h( t

s
). The bandwidth of h(t) is normalized to

unity so the scalar 2=s is the bandwidth of the �lter hs(t),
previously denoted by W. The output of the �lter is then
sampled at the Nyquist sampling rate 1

s
. The N = T

s
sam-

ples are put in an N-dimensional vector y which is a Gaus-
sian vector of mean � and covariance N0C, where:

� = x(t� t0) � hs(t)jt=ns+�
and

Cij =

Z 1

�1

Z 1

�1

rn(u� v)hs(u+ is)hs(v + js)dudv

i; j = 1; :::; N

where * stands for the convolution operation, rn(�) = Rn(�)=�2n
is the normalized noise correlation function and s � � =
bt0=sc � 0 presents the synchronization factor in the sam-
pling operation. For white noise with rn(u) = �(u), Cij =R1
�1

hs(u+ is)hs(u+ js)du i; j = 1; :::; N . Direct deriva-

tion of I = �Ef @
2lnf(yj�)

@�2
g yields:

I(t0; �; s; h) =
1

N0
wTC�1w (5)

where w is an N-dimensional vector whose n-th entry is:

wn =
@[s(t� t0) � hs(t)]

@t0
jt=ns+�

= s(t) � @hs(t� t0)

@t0
jt=ns+� = �1

s
Wsf (t� t0)jt=ns+�

Note that Wsf (t) = s � [sh0( t
s
)] is the wavelet expansion of

s(t) with the analyzing function h0(t) = dh(t)

dt
.

The matrix C is a symmetric, NxN Toeplitz matrix. De-
note by 
i; i = 0; ::; N�1, the element of the i-th diagonal
such that Cmn = 
i for jm � nj = i. We assume that
the function h(t) has a �nite support so 
i = 0 for i > M ,
where, for observation time (T) su�ciently large compared
to the noise correlation time,M << N . Under this assump-
tion the end e�ects can be ignored so that for N !1 C�1

is asymptotically a symmetric, Toeplitz matrix. The inverse
matrix elements are denoted by C�1

mn = c�1i for jm�nj = i.
Equation (5) can then be written as:

I(t0; �; s; h) ' 1

N0
fc�10

N�1X
n=0

!2n + 2c�11

N�2X
n=0

!n!n+1 + :::

+ 2c�1N�1!0!N�1g (6)

The resulting CRLB (the inverse of I) depends on the �lter
h(t), on � and on s = 1

2W
. Before maximizing (6) with

respect to h(t), we need to eliminate � , which can be re-
garded as a synchronization factor which does not appear in
asynchronous estimation procedures (such as the matched
�lter). From a more theoretical point of view, it can re-
garded as a mismatch between the parameter space and
the estimates: it is reasonable to assume that � 2 R

P+1,

where � = [t0;  ]
T . Usually, also  ̂ 2 R

P . However, the
sampling operation forces t̂0 to be at a subspace of R.
In fact, if ts is the sampling time then t̂0=ts 2 Z while
t0 2 R. � = (t0 � t̂0)=ts 2 [0; s] represents this di�er-
ence. It is reasonable to assume that � is a random vari-
able, uniformly distributed over [0; s]. Since the Cramer-
Rao inequality is satis�ed for any � , it is also satis�ed un-
der averaging over � , so: V arft̂0jsg � I(t0; �; s; h) � 1 yields
V arft̂0jsg �E�fI(t0; �; s; h)g � 1. Therefore (6) yields:

V arft̂0jsg � 1
1
s

R s
0
I(t0; �; s; h)d�

= �I�1(t0; s; h) (7)

where �I(t0; s; h) =
1
s

R s
0
I(t0; �; s; h)d� .



Applying (7) on (6) yields:

�I(t0; �; s; h) ' 1

N0
fc�10

Z T

0

!20d� + 2c�11

Z T

0

!0!1d� + :::

+ 2c�1N�1

Z T

0

!0!N�1d�g (8)

Note that both the coe�cients c�1n which are related to the
covariance of the sampled noise and the signal wavelet co-
e�cients wn = � 1

s
Wsf (t� t0)jt=ns+� depend on h(t). The

optimal choice of h(t) which maximizes �I of (8) therefore
depends on both s(t) and on the noise covariance function.
However, from our experience with di�erent waveshapes,
h(t) which makes the matrix C close to a diagonal matrix
is a good choice, independent of the signal s(t). With a
white, Gaussian noise such h(t) is the cubic spline, given
by:

h(t) = f
4
3
+ 8jtj3 � 8t2 ; 0 � jtj � 0:5
8
3
(1� jtj)3 ; 0:5 < jtj � 1

0 ; elsewhere
: (9)

That is, the mother wavelet used for calculating f!ng is the
derivative of the cubic spline - the quadratic spline [5].

Under this choice, c�1i � 0 for i 6= 0. Therefore, the
bound of (2) for the estimation error of TOA of a known
signal in zero mean, white Gaussian noise at a given sam-
pling rate fs = 1=s can be approximated by:

ALB(t0jN0; s) �
�

1

s2N0


Z T

�T

[Ws(u� t0)]
2du

��1
(10)

where Ws(t) = s(t) � [ 1
s
h0( t

s
)] and 
 =

R 1
�1
h2(t)dt, for h(t)

given by (9).

3.1. Example

Assume a signal s(tj ) which has a modulated Gaussian
shape:

s(tj ) = Ae�(2�f1t)
2

sin(2�f2t+ �) (11)

Such a signal characterizes ultrasonic measurements. For
example, in the data we were given, typical parameters are:
A = 100�V ; f1 = 5MHz; f2 = 10MHz. The delay t0 is
typically not greater than 200�Sec. It can be shown that
the CRLB for estimating the TOA of s(t) from the con-
tinuous data x(t) of (3), where all the nuisance parameters
 = (A; f1; f2; �) are known, can be approximated by:

CRLB(t0j ) � 3:77p
�

N0

f1A2
: (12)

We compare this bound with the achievable estimation per-
formance under undersampling conditions, as described by
the ALB of (10). In Fig. 1 we depict the CRLB of (12) and
the approximated LB of (10) (ALB) which has been de-
rived numerically for s(t) of (11) and h(t) of (9). Actually,
the wavelet expansion coe�cients Ws have been evaluated
using Matlab routines for the fast wavelet transform. The
two bounds are presented as a function of the sampling rate,
normalized by the Nyquist rate, fs = 2W0, for N0 = 1. For
the Gaussian waveshape we assumed that the bandwidth of

0 0.2 0.4 0.6 0.8 1 1.2
-82

-80

-78

-76

-74

-72

-70

-68

-66

Actual sampling rate/Nyquist rate

st
d(

TO
A

 e
st

im
at

e)
/N

o 
[d

B
]

CRLB

ALB

Figure 1: The estimation error of t0 as a function of the
sampling rate and the corresponding CRLB

the signal is the quantity corresponding to three standard
deviations, i.e., W0 = 3

p
2f1Hz.

This example demonstrates the general characteristics
of the achievable TOA estimation performance. Above the
Nyquist rate, increasing the sampling rate (oversampling)
does not improve performance. Below this point, decreas-
ing the sampling rate (undersampling) decreases the per-
formance. However, in this example one can undersample
by a factor of 3 while losing only about 3dB in the estima-
tion performance. Undersampling by a larger factor causes
a signi�cant degradation in the achievable estimation per-
formance.

3.2. Unknown nuisance parameters

If the nuisance parameters  are unknown, the entire vector
� = (t0;  ) should be estimated. To carry out the approach
of section 2, we now need to do the following:

i) Construct the Fisher information matrix (FIM) J whose

(i; j) entry is given by: Jij = �Ef @
2lnf(yj�)

@�i@�j
g for

i,j=1,...p+1. y is the vector of the samples at the
output of the �lter h, as described above equation
(5). The scalar I of (5) is the (1,1) entry of the re-
sulting FIM.

ii) Average the resulting (p+1)x(p+1) FIM with respect
to � . The (1,1) entry of the resulting matrix, �J =
E�fJg, is �I of (7).

iii) Maximize the resulting matrix, �J(f; s; �; h), with re-
spect to h. The inverse of the matrix �J at h = h0 is
the Cramer-Rao matrix whose diagonal entries bound
the estimation errors of �.

The last step is not well de�ned. Di�erent approaches can
be taken with respect to the required maximization. Two
are listed below:

� Find ho such that �J(f; s; �; h)� �J(f; s; �; h0) is a non
negative de�nite matrix for any s and �.



� Find h0 which minimizes the (1,1) entry of the inverse
of �J which is the bound on t0. That is, maximizes
the scalar �J11 � �Jt0 

�J�1  
�J t0 with respect to h(t).

The �rst option means to optimize the FIM with respect to
all unknown parameters. The second looks for the optimal
choice for t0, which may not be optimal for the nuisance
parameters  . Note that the �rst condition is su�cient but
not necessary for the second condition to hold.

The optimal way for performing the maximization is
still under study. However, from a practical point of view,
for TOA estimation choosing h of (9) is satisfactory even
for the case of unknown nuisance parameters.

4. CONCLUSIONS

Is the Nyquist sampling rate necessary for optimal param-
eter estimation from continuous data? Obviously, it is suf-
�cient. However, this paper suggests that one can under-
sample without paying in estimation performance.

We have presented a general tool to evaluate the achiev-
able parameter estimation performance using undersampled
data. Using this tool one can evaluate the amount of pa-
rameter estimation performance degradation corresponding
with a certain undersampling factor. We have applied this
tool to the classic problem of time of arrival estimation
and, in a certain example we have shown that the perfor-
mance loss due to undersampling by a factor of 3 or less is
bounded by 3dB. This example show that one may consider
undersampling as a way to reduce complexity of parameter
estimation DSP systems.
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