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ABSTRACT

In this paper we propose a novel approach to the detec-
tion of acoustic irregular signals using Minimum Detec-
tion Error (MDE) training. The MDE training is based
on the Generalized Probabilistic Descent method, which
was originally developed as a general concept for dis-
criminative pattern recognizer design. We demonstrate
its fundamental utility by experiments in which several
acoustic events are detected in a noisy environment.

1. INTRODUCTION

We are usually surrounded by various kinds of acoustic
events such as speech, tra�c noise, bird songs, and mu-
sic. Detection of (unexpected) irregular sounds in such
a daily life environment is an important application of
intelligent signal processing.

Acoustic signal monitoring has long been studied in
the framework of machine failure monitoring [1, 2, 3],
and its importance is growing in today's information
society where the application range of acoustic signal
monitoring now extends to medical care and security
control, as well as the traditional manufacturing appli-
cation. The main procedures of acoustic signal moni-
toring are to 1) segment an observed signal to acous-
tic events and 2) classify the events as either regular
classes or irregular classes. The larger the size of classes
that a system can handle, the more intelligent and use-
ful the system. A desirable monitoring system should
achieve the minimum detection (both detection-failure
and false-alarm) error status for the irregular classes.

Conventionally, monitoring systems have been de-
veloped by simply combining the existing signal pro-
cessing techniques of spectrum analysis and pattern
recognition, and no design e�orts have been applied
that enable one to achieve the minimum error condi-
tion [1, 2]. Consequently, the systems work well to some
extent but there is still much room for improvement in
their design procedures. Motivated by this concern,
we introduce in this paper a novel solution to a design

problem of acoustic signal monitoring systems, which
we refer to as Minimum Detection Error (MDE) train-
ing. The proposed method uses the design concept of
Minimum SPotting Error training (MSPE) [4], which
was developed based on the Generalized Probabilistic
Descent method [5] for spoken keyword spotting, and
newly incorporates several techniques suited for the on-
line operation of acoustic signal monitoring.

There are many possibilities, in terms of system
structure selection, for MDE implementation. Among
them, we specially study in this paper a monitoring
system based on a kernel-based neural network in the
task of detecting irregular sounds observed in a com-
puter room.

2. FORMALIZATION OF ACOUSTIC

SIGNAL MONITORING

Let us assume X = [x1 x2 ::: xt :::] to be an input (to
a detection system) that contains acoustic events to be
detected and is a sequence of D-dimensional acoustic
feature vectors, where xt is the acoustic feature vector
at time (frame) index t. One should also notice that
X is a right-endless sequence. Our task is to detect
events of S classes of regular acoustic signal (Cs; s =
1; 2; :::; S), assuming that the portion of input that is
not detected is considered to belong to irregular class
(Ĉ). We consider performing the task by using the
procedure illustrated in Fig. 1; That is, we set a signal
detector for each regular class, make a classi�cation
decision at every time t in the class-by-class mode, and
�nally emit irregular events.

The proposed procedure looks indirect with respect
to the goal of irregular event detection. However, it
is not realistic to model all the unexpected irregular
phenomena, and thus the strategy of Fig. 1 is a good
practical solution to the problem.

The quality of the monitoring procedure mainly re-
lies on the detection accuracy of regular class events.
The detection is basically equivalent to the process of
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Figure 1: Irregular-signal Detection System

keyword spotting, and it is formalized as follows. We
�rst de�ne a block (a partial sequence of the acoustic
feature vectors) Bt = [xt�L1

::: xt ::: xt+L2
] around xt,

where L1 and L2 are positive natural numbers. To mea-
sure the degree to which Bt belongs to class s, we next
introduce a discriminant function. Since we consider
a kernel-based network system, the discriminant func-
tion naturally outputs the distance measure between
Bt and a kernel-based model of Cs, �s, and it is de-
noted as gs(Bt; �s). Due to the temporal structure of
blocks and models, the nonlinear time warping mecha-
nism, which is often used in speech pattern recognition,
is incorporated in the distance calculation. Then, the
rule of detection is expressed as

hs � gs(Bt; �s) ) xt is classi�ed as Cs;

hs < gs(Bt; �s) ) xt is not classi�ed as Cs; (1)

where hs is a preset threshold for class s. It is clear
here that the parameter set, �s = f�s; hsg, determines
the detection quality for class s, and our design target
accordingly comes to �nd a state of �s that results
in the minimum detection error condition. Figure 2
illustrates the detection procedure.
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Figure 2: Procedure of Signal Detection

3. MINIMUM DETECTION ERROR

TRAINING

3.1. Basic Formalization

The MDE training is applied individually to each regu-
lar-class signal detector. A key idea of the training is to
formalize the entire detection operation and evaluation
process as a smooth function of the trainable parame-
ter set of detector �s (�rst di�erentiable function with
regard to �s) [4, 5].

The �rst step of the formalization is to express the
detection decision of (1) by a smooth function of �s.
To do this, we de�ne a detection measure as

ds(Bt;�s) = hs � gs(Bt; �s): (2)

From (1), it can be noticed that ds(�) � 0 means that
xt is classi�ed asCs, and ds(�) < 0 means that xt is not
classi�ed as Cs. Obviously, ds(�) is a smooth function
of �s.

In the signal detection, there are two types of errors:
(1) detection-failure (DF) error, which corresponds to a
failure to detect an existing event, and (2) false-alarm
(FA) error, which corresponds to the detection of a
false event. In the second step of the formalization, we
incorporate these errors to the de�nition of loss that
is used for evaluating detection decision results in the
training stage. Since there are two types of errors, a
loss is de�ned as

`s(Bt;�s; �s) =
1

1 + exp (�s � ds(Bt;�s))
; (3)

�s =

�
�s;1 > 0 for xt 2 Cs,
�s;2 < 0 for xt =2 Cs.

Notice here that the smooth DF-error loss `s(�; �s;1)
and the smooth FA-error loss `s(�; �s;2) approximate
the DF error counts and the FA error counts, respec-
tively.

The �nal stage of the formalization is to provide a
training procedure for�s. Our training target is clearly
to �nd the optimal status that leads to the minimum
detection error condition over training input. Based
on the probabilistic descent theorem [5, 6], we use the
following adjustment rule for every feature vector xt:

�(t+1)
s = �(t)

s � "tUsr�s`s(Bt;�
(t)
s ; �s); (4)

where "t, called learning coe�cient, is a positive, mono-
tonically-decreasing (with regard to t) constant, Us is
a positive-de�nite matrix, r�s denotes the derivative

(gradient) with regard to �s, and �
(t)
s represents the

parameter status before updating at time t.
An in�nite run of the above adjustment over an

endless input is proved to lead almost surely to the (at



least local) minimum of the detection error rate in the
sense of the following de�nition [5, 6]:

Detection Error Rate

=
No. of DF errors + No. of FA errors

Total No. of Frames (t)
: (5)

In a realistic training condition where only a �nite run
is possible, the adjustment approximates the minimum
detection error status over the available length of the
training input signal, or set of signals.

For clarity, let us re-explain in the �nal paragraph
of this section that the signal monitoring system �rst
uses the above-trained signal detectors for detecting
regular class events and then emits, based on the result
of the regular class event detection, the target events
of irregular class.

3.2. Extension Using DMD

In the basic formalization, we considered the optimiza-
tion (training) only of the model parameters and the
threshold, f�s; hsg. However, since the feature vectors
are separately computed, the input sequence X and
the blocks Bt (t = 1; 2; :::) are not necessarily optimal
for accurate detection decision. Improvement of the
feature representation of the input would be useful for
increasing the system performance. In this light, based
on the Discriminative Metric Design (DMD) [7], we ap-
ply a feature transformation operator Ts(�;'s) to Bt,
where 's is a trainable parameter used for transfor-
mation, and aim at jointly optimizing 's and f�s; hsg
with the single objective of detection error minimiza-
tion. This extended training enables one to �nd a use-
ful, detection-oriented feature representation for every
regular class, resulting in a more accurate detection of
regular and irregular events.

4. IMPLEMENTATION EXAMPLE USING

KERNEL-BASED NETWORK

4.1. Implementation

As an implementation example, we designed a monitor-
ing system that computed �lter-bank power spectrum
feature vectors and consisted of kernel-based signal de-
tectors. An input here is a sequence of D-dimensional
feature vectors, where each vector component is a log-
arithmic power spectrum coe�cient that is calculated
with its corresponding narrow-band �lter. Similar to
[8], the detector has a state-transition structure and as-
signs multiple kernels (prototypes or reference vectors)
to each state. Then, for Cs, the discriminant function

is de�ned as

gs(Bt; �s) = min
XT2

T1
�Bt

min
�
T2

T1

Ds(X
T2
T1
; �s;�

T2
T1
); (6)

XT2
T1

= [ xT1 ::: xt ::: xT2 ] � Bt;

�T2
T1

= [ �T1 ::: �t ::: �T2 ] (�t 2 f1; 2; :::; Ng);

Ds(X
T2
T1
; �s;�

T2
T1
) =

1

T2 � T1 + 1

T2X
�=T1

�s(x� ; �s;�� );

where XT2
T1

is a subsequence included in Bt (it is as-

sumed that XT2
T1

involves xt), �T2
T1

is a sequence of
the state indices, �s(x� ; �s;j) is a local distance mea-
sure of x� at the j-th state of the Cs's model, and
Ds(X

T2
T1
; �s;�

T2
T1
) is an accumulated distance that is de-

�ned as the arithmetic mean of the local distance mea-
sures �s(�) along the path �T2

T1
. Theoretically, discon-

tinuous operations such as min should not be included
in GPD-based training. However, for computational
simpli�cation, we use such theoretically-inadequate but
convenient operations in our implementation.

To perform the DMD-based transformation opti-
mization, we specially de�ne �s(�) as

�s(x� ; �s;j) = min
m

jjWs;j(x� � rs;j;m)jj
2; (7)

where jj�jj is the Euclidean norm,Ws;j denotes the D�
D feature transformation matrix at the j-th state, and
frs;j;mg

M
m=1 denotes the set of kernels at the j-th state.

A trained state of fWs;jg
N
j=1 leads to the most useful

features in the sense of MDE training optimization.
Incorporating the signal detectors into the scheme

of Fig. 1 results in a kernel-based monitoring system
that enables one to detect irregular acoustic events,
represented in the �lter-bank output features.

4.2. Experimental Evaluation

The task was to detect irregular sound events in a noisy
machine room environment. Five input signal sets were
recorded at a sampling frequency of 8 kHz. Each set
is about 30 sec in length. The �rst four sets were
used for training, and they contain four kinds of acous-
tic events: background noise (BN), male voice (MV),
portable phone ringing (PP) and hand clap (HC). The
remaining set was used for testing, and they contain the
sound of hitting two screwdrivers against each other
(SD) as well as the aforementioned four events. We
consequently regarded the SD class as an unknown, ir-
regular signal class in the experiment.

To simulate a 16-channel �lter-bank, we calculated
FFT-based 16-dimensional, short-time log-power spec-
tral vectors, by moving a 32-ms Hamming time win-
dow with an 8-ms shift length. X was consequently



a sequence of the 16-dimensional, log-power spectral
vectors, calculated at every 8 ms.

For the four regular classes, the acoustic models of
the signal detector had a 3-state, 1-kernel structure.
For the MDE training, the kernels were initialized by
using segmental K-means clustering. The clustering
was done in a class-by-class mode. All the feature
transformation matrices fWs;jg were initialized at the
identity matrix. Moreover, for every class, the initial
value of the decision threshold hs was selected through
some preliminary analysis of the DF/FA errors pro-
duced with the initial con�guration of the signal detec-
tor model so that the total number of these errors can
be close to the minimum.

We summarize the detection error rates for the train-
ing data and test data in Table 1. In the table, K-
means stands for the segmental K-means clustering;
MDE stands for the 200-epoch (\epoch" means one full
presentation of training sequence) MDE training with-
out the adjustment of fWs;jg; MDE-DMD stands for
the 200-epoch MDE training with the adjustment of
fWs;jg; and \Av" denotes the average error rate over
the four regular classes (BN, MV, PP and HC). Here,
the error rate was calculated according to (5).

Table 1: Detection error rates (%)
(a) Training Data

K-means MDE MDE-DMD

BN 2.95 2.53 2.31

MV 2.16 0.393 0.237

PP 0.868 0.192 0.128

HC 1.28 0.347 0.374

Av 1.81 0.866 0.762

(b) Test Data

K-means MDE MDE-DMD

BN 3.72 3.20 3.46

MV 2.54 1.56 0.635

PP 0.404 0.289 0.144

HC 0.981 0.577 0.548

Av 1.91 1.41 1.20

SD 2.97 1.59 1.41

For all of the four regular classes, the MDE-trained
detectors achieved lower detection error rates than the
segmental-K-means-based detectors. Also, in most cases,
the detector, for which the feature transformation ma-
trix was further optimized, showed improvement. The
superiority of the MDE training is observed over train-
ing and more importantly over testing data. The im-
provement in the regular class event detection causes
one to expect a more accurate detection result for the
irregular class events. Actually, in (b) of Table 1, we
can clearly see improvements in the detection error
rates of SD. The MDE training achieved about a 50
% error rate reduction, compared with the K-means-

trained system. As a whole, the results clearly demon-
strate the utility of the proposed strategy of sound
monitoring and the MDE training.

5. CONCLUSION

This paper has introduced a novel approach to acous-
tic signal monitoring, proposing a new design method
called Minimum Detection Error training. It has also
demonstrated the utility of the MDE-based approach
in an experimental task of detecting irregular sound
events in a noisy room environment.

The proposed monitoring method is quite general.
One can easily apply the method to various kinds of sig-
nal detection and monitoring tasks, and also use any
reasonable system structure, such as multi-layer per-
ceptron, in its implementation. The well-formalized
mathematical basis of the method can also contribute
to making the theoretical framework of intelligent sig-
nal processing more sound.
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