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ABSTRACT
A closed-loop adaptive subband prediction architecture is
presented by employing an adaptive subband filter in the
prediction configuration. Some authors have suggested that
applying open-loop prediction methods to subband signals can
realize increased prediction gain over fullband prediction.
Furthermore, the benefits of applying multirate techniques to
adaptive filtering are well understood in terms of reduction of
computational complexity and increased convergence speed.
Thus, the closed-loop subband adaptive predictor is a novel
approach that is expected to exhibit these same benefits along
with the advantages of backward adaptation. Results show that
the new subband predictor can produce a higher prediction gain
than a similar fullband adaptive prediction filter. The proposed
architecture is implemented in C++ on the Pentium processor.

1. INTRODUCTION

This paper proposes an adaptive subband prediction architecture
that utilizes closed-loop adaptation. Prediction and adaptive
filtering have been successfully employed in many applications
such as speech coding, time series modeling, and spectrum
estimation. Subband techniques which are also popular in speech
coding and spectrum estimation have been applied to adaptive
filtering in order to improve performance. Recent work has
suggested that applying adaptive prediction to subband signals
may realize increased prediction gain over fullband prediction
under certain conditions; however, this work generally involves
open-loop adaptation approaches such as the autocorrelation or
covariance method of least squares [4][5][9]. Since subband
prediction based on closed-loop adaptation is a novel approach
to the prediction problem, an examination of such a predictor is
warranted.

Adaptive filtering is applied to prediction because of its ability to
track and converge upon the stochastic characteristics of a signal
[2]. In nonstationary environments adaptive algorithms provide a
frequent coefficient update that follow changes in signal
statistics. Such algorithms are generally classified as either open-
loop or closed-loop [3]. Open-loop or forward adaptation
involves buffering a window of samples and estimating the
predictor coefficients for each successive window. Open-loop
adaptation introduces buffering delay into the signal path. In
communication applications, forward adaptation coefficients are
transmitted through a channel requiring additional channel
capacity and exposing the coefficients to noise and coding
problems.  In closed-loop or backward adaptation, the filter
coefficients are derived from the previous set of coefficients and
a feedback error signal. The backward coefficient update does
not require buffering and may be performed as often as desired

even on a per-sample basis. In communication applications, the
recursive nature of backward adaptation allows a receiver to
derive the filter coefficients rather than require a periodic
transmission of this information.

Many papers have been written about the combination of
multirate techniques and adaptive filtering [1][6][7][8]. The
resulting subband adaptive filter can reduce the computational
complexity and increase convergence speed with respect to the
fullband case. However, multirate analysis and synthesis may
introduce delay into the signal path and may cause aliasing in
critically downsampled systems. Because the proposed subband
prediction structure is based on adaptive filtering in subbands, it
inherits the same characteristics.

The remainder of this paper discusses the background and
implementation of a subband, closed-loop, adaptive predictor in
more detail. Section 2 describes the operation of the closed-loop
adaptive prediction filter focusing on some of the possible
adaptation algorithms and performance metrics. Section 3
reviews the advantages of adaptive filtering in subbands. Section
4 proposes the closed-loop subband prediction architecture and
describes supporting theory. Section 5 provides a computational
analysis, section 6 presents simulation results, and section 7
describes the real time implementation. Section 8 summarizes.

2. CLOSED-LOOP ADAPTIVE
PREDICTION

In prediction, a filter is used to estimate future values of a signal
from prior observations. Figure 1 shows a closed-loop, adaptive
predictor where d(n) is the desired signal, u(n) is the adaptive
filter input, y(n) is the predicted signal, and e(n) is the prediction
error. Although a single delay is shown, the delay could be as
many samples as desired. If the predicted signal is the desired
output, then this configuration is known as a prediction filter or
predictor. If the error signal is the desired output, then the
structure is called a prediction error filter.

The Normalized Least Mean Squares (NLMS) and the Recursive
Least Squares (RLS) adaptation algorithms are two popular
algorithms for updating linear adaptive filter weights [2]. The
NLMS algorithm is a stochastic gradient type algorithm that
relatively low complexity requiring O(3P) multiplications where
P is the adaptive filter order; however, the convergence speed of
the NLMS is slowed by input signals with wide eigenvalue
spread. The RLS algorithm is more complex than NLMS

requiring O(P2 5P)+  multiplications, but its convergence is
independent of eigenvalue spread.



The performance of a predictor is measured using a quantity
known as prediction gain [3]. The prediction gain is given by the
ratio
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the variance of the prediction error, e(n). Thus, given the same
input signal, the better predictor produces a smaller error
variance yielding a larger prediction gain. The error variance may
be estimated using the time average
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where d is the mean of the input signal.

Another popular metric, the spectral flatness measure (sfm)
gauges the flatness or whiteness of a power spectral density (psd)
[3]. The sfm may take values between zero and unity where a
unity spectral flatness measure represents a white process. The
inverse of the sfm measures the waveform predictability of a
process where the value for an unpredictable (white) process is
unity and the value for a totally predictable process is infinity.
For linear prediction, the prediction gain is upper bounded by the
waveform predictability.

3. ADAPTIVE FILTERING IN
SUBBANDS

The subband adaptive filter merges the concept of subband
analysis and adaptive filtering by applying an adaptive filter to
each subband signal [1][7][8]. Figure 2 shows the structure of
the subband adaptive filter where only one of the adaptive filters
is shown for brevity. (The necessity of either synthesis bank is
determined by the application.)  The adaptive filter order for each
subband is usually chosen to be much smaller than a comparable
fullband adaptive filter although the total number of coefficients
may be comparable.

Adaptive filtering in subbands has the potential to reduce
computational complexity compared to the fullband case.
Decimation through subband analysis reduces the required
computation rate [3]. Since the power spectral density of each
subband signal is flatter than the psd of the fullband signal, the

adaptive filter of each subband requires fewer filter coefficients
than the fullband filter for similar performance. The ability to
reduce filter order is particularly important for adaptation
algorithms such as the RLS where complexity is proportional to
the square of the adaptive filter order. For a fullband filter of
sufficiently large order, the computational savings of adaptive
filtering in subbands absorbs the complexity of the analysis and
synthesis banks.

Adaptive filtering in subbands can increase convergence speed.
Subband signals have a smaller eigenvalue spread than the
corresponding fullband signal which increases convergence
speed for stochastic gradient based adaptation algorithms such as
the NLMS. Thus, the composite subband adaptive filter
convergence speed is enhanced.

In cases where the subbands are critically decimated, aliasing
problems may occur.  Due to the adaptive nature of this structure,
perfect reconstruction filters do not correct aliasing as they do for
standard subband analysis and synthesis. Methods for alleviating
aliasing problems include using adaptive cross filters for adjacent
bands which slow the convergence rate by coupling adjacent
subbands; nonoverlapping subbands which leave spectral gaps;
and nonoverlapping subbands with auxiliary filter banks which
require additional analysis and synthesis filter banks [1][6][7][8].
A more in-depth discussion of these methods is beyond the scope
of this paper; however, these references are made for
completeness.

4. SUBBAND PREDICTION
ARCHITECTURE

Some studies have shown that applying prediction to subband
signals can realize increased prediction gain over prediction of
the fullband signal under certain conditions. This research
applies AR and ARMA models to subband signals using open-
loop adaptation techniques such as Prony’s method and the
method of least squares. Similar to the subband coding rate
allocation problem, Rao and Pearlman [5] show that prediction
coefficients can be optimally allocated among the subbands in
order to form a subband predictor that is superior to the fullband
predictor given a fixed prediction order and stationary input.
Using the spectral flatness measure, they reason that the
combined prediction error power spectral densities of such an
optimally formed subband predictor is whiter than the psd of the
prediction error from the fullband predictor. However, the
fullband predictor is superior when it is able to capture all of the
prediction gain, i.e., when the prediction order approaches or
exceeds the order of the input process. Other experimental results
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Figure 1. Single-step adaptive prediction filter.
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Figure 2. Adaptive filtering in subbands.



show that the subband prediction gain can exceed the fullband
prediction gain for nonstationary signals such as speech [9].

A closed-loop adaptation structure may show a similar increase
in subband prediction gain while providing a per-sample model
of the predictor input. Additionally, a subband adaptive filter
applied in the prediction configuration directly inherits the
performance advantages in reduced computation and increased
convergence speed as described in the previous section. Figure
3(a) shows the structure of the closed-loop subband adaptive
predictor where the desired signal leads the adaptive filter input
by one fullband sample. Figure 3(b) shows an alternative
structure for the subband predictor with one less analysis bank
where the desired signal leads by one subband sample or N
fullband samples. Since the delay between the desired and input
signals is smaller, a higher correlation between the two signals is
expected for figure 3(a) indicating a potential for better
performance.

5. COMPUTATIONAL ANALYSIS

The fullband predictor requires one adaptive filter with Pf
coefficients. For N fullband samples, the NLMS algorithm
requires 3NPf  operations, and the RLS algorithm requires on

the order of N(Pf
2 + Pf )  operations. The corresponding subband

predictor has N  subbands and requires N  adaptive filters.
Assuming that the total number of subband predictor coefficients
equals the fullband predictor order and that these coefficients are
evenly distributed across the subbands, each subband adaptive
filter has order Ps = Pf N . For N  fullband samples (or one

subband sample per band), the NLMS algorithm requires 3NPs
or 3Pf  operations. The RLS algorithm for all N  subbands

requires N(Ps
2 + Ps)  or Pf

2 N 5Pf+  operations. Thus, the

subband adaptive filter provides a factor of N  improvement in

computation for the NLMS algorithm and a factor of N2  for the

RLS algorithm. For cases where the total number of subband
adaptive filter coefficients is less than the fullband adaptive filter
order, the reduction in complexity can absorb the computation
required by efficient analysis and synthesis algorithms.

6. SIMULATION RESULTS

The subband adaptive predictor from Figure 3(a) is simulated for
the two subband and four subband cases. The prototype analysis
filter is a 29th order lowpass filter designed using the window
method. Adaptive filter coefficients are divided equally among
the subbands although better performance is expected for
optimally allocated coefficients. The structure is tested using
three signals: a deterministic dual tone signal, a short sample of
real speech, and a 15th order AR process. The prediction gain is
estimated over 500 samples and compared against results for the
fullband case.

Table 1 shows the prediction gain results for the two subband
case. The total number of prediction coefficients is ten with five
coefficients allocated to each subband. Table 1(a) shows that the
fullband predictor is superior for the dual tone test signal. Tables

Table 1. Prediction gain using a total of 10 prediction
coefficients for (a) a dual tone signal, (b) real speech, and
(c) a 15th order AR process.

(a) Fullband 2 Subbands

NLMS 2.3x10
13

1.3x10
6

RLS 2.2x10
22

2.0x10
19

(b) Fullband 2 Subbands

NLMS 2.3779 3.9794

RLS 4.4787 9.8583

(c) Fullband 2 Subbands

NLMS 0.8508 2.1220

RLS 1.9726 6.1866
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Figure 3. Two subband adaptive predictor structures.
The top form (a) shows an adaptive subband filter in the
prediction configuration. The bottom form (b) shows
adaptive prediction in each subband.

Table 2. Prediction gain using a total of 12 prediction
coefficients for (a) a dual tone signal, (b) real speech, and
(c) a 15th order AR process.

(a) Fullband 4 Subbands

NLMS 1.4x10
26

2.0x10
6

RLS 2.2x10
22

4.7x10
6

(b) Fullband 4 Subbands

NLMS 2.5384 2.1336

RLS 4.4675 12.5896

(c) Fullband 4 Subbands

NLMS 0.8927 1.0153

RLS 1.9785 6.5701



1(b) and 1(c) show that subband predictor can outperform the
fullband predictor.

Table 2 shows the prediction gain results for the four subband
case. The total number of prediction coefficients is twelve with
three coefficients allocated to each subband. Table 1(a) shows
again that the fullband predictor is better for the dual tone signal.
In table 2(b), the fullband NLMS predictor slightly surpasses the
corresponding subband predictor while the subband RLS
predictor outperforms the fullband RLS predictor. Table 2(c)
shows that the subband predictor performs better for the AR
process input.

7. IMPLEMENTATION

The two-band NLMS subband predictor is implemented in C++
with the Standard Template Library (STL) on a 120 MHz
Pentium processor. The analysis and synthesis filter banks use a
29th order lowpass prototype. Figure 4 shows the average
execution time to process 32,000 samples for varying prediction
order. For instance, the resulting code consumes approximately
1.43 seconds in order to process 32,000 samples with a 5th order
predictor in both subbands. Assuming an 8 kHz sampling rate,
the code executes roughly 2.8 times better than real time for this
case. In fact, Figure 4 shows that the code executes under real
time for more than 90 prediction coefficients in both subbands at
8 kHz.

8. CONCLUSION

This paper has presented a prediction architecture based on
closed-loop, adaptive filtering in subbands. The closed-loop
structure maintains a per-sample model of the input and allows a
coefficient update as often as desired. The subband configuration
can increase convergence speed and considerably reduces the
computational complexity of the structure. Results show that the
proposed predictor can yield increased prediction gain over the
fullband case especially for nonstationary input for both the
NLMS and RLS algorithms. A real time NLMS subband
predictor has been implemented in C++ for the 120 MHz
Pentium processor.
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Figure 4. Execution time versus prediction order
averaged over 32,000 samples.


