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ABSTRACT
This paper presents a novel method using robust features for
speech recognition when the speech signal is corrupted by additive
and convolutional noises. This method is conceptually simple and
easy to be implemented. The additive noise and the convolutional
noise are removed by temporal trajectory filtering in
autocorrelation domain and cepstral domain, respectively. No
prior information of noise corruption is necessary. A task of
multi-speaker isolated digit recognition is conducted to
demonstrate the effectiveness of using these robust features. The
cases of channel filtered speech signal corrupted by additive white
noise and color noise are tested. Experimental results show that
significant improvements can be achieved as comparing with
some traditional features.

1. INTRODUCTION

It is well known that the performance of automatic speech
recognition systems may drastically degrade in case of mismatch
between training and test environments. This problem is inevitably
encountered when the speech recognizers are deployed in real
environment where noise or channel effect always exists.

The techniques for robust speech recognition may be classified
into four categories: speech enhancement methods [1], robust
feature representation [2-5], model compensation methods [6-7],
and robust distance measures [8-9] .They may be designed to deal
with additive noise, convolutional noise, or the combination of
both noises. Some of these methods had applied the technique of
temporal trajectory filtering. The method of RASTA uses temporal
filtering in logarithmic spectrum domain[3].  Hirsch et al. [10] use
temporal filtering in  linear subband domain. Avendano et al. [11]
extend this temporal filtering method to DFT magnitude trajectory
for dereverberation of speech. If we look at the case of corruption
by additive and convolutional noises simultaneously, we find that
many methods need the prior information of noise or spend much
computation effort. These disadvantages result in the restriction
for practical applications.
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This paper proposes a method using new features that are robust to
stationary noise.  In short-term analysis, a set of feature parameters
is derived for each frame so that a speech is represented by a
sequence of feature vectors. If the effect of stationary noise is a
constant added to the features for all the frames, this constant can
be removed by filtering the temporal trajectory of feature vectors
along the frames.  Here we remove the additive noise by filtering
the trajectory of autocorrelation coefficients and the channel effect
by filtering the trajectory of  cepstral coefficients. These two
noises can be simultaneously removed in our proposed method
without too much effort in computation.

2. ROBUST FEATURES
In this paper, the focus is on the effect of the additive and
convolutional noises to the speech recognition. We assume that
the channel and the additive noise are stationary. The degradation
of speech signal is shown in Figure 1. This speech is modeled as

y m n x m n w m n( , ) ( , ) ( ) ( , ),= ⊗ +h n (1)

0 1≤ ≤ −m M  0 1≤ ≤ −n N

where m is frame index, n is discrete time index within a frame,
x m n©  ª  is clean speech, y m n©  ª  is degraded speech, h n© ª

is impulse response of channel, w m n©  ª is additive noise, and

“ ⊗ ” denotes the convolution operation. If x m n©  ª ,

w m n©  ª  and h n© ª  are uncorrelated, the autocorrelation of

the noisy speech can be expressed as

r m k r m k k k r m kyy xx ww( , ) ( , ) ( ) ( ) ( , )= ⊗ ⊗ +h h (2)

0 1≤ ≤ −m M , 0 1≤ ≤ −k N

where r (m,k)yy , rxx ( , )m k  and rww © ªk  are the short-term

autocorrelation sequences of noisy speech, clean speech, and
additive noise, respectively, and k is the autocorrelation sequence

Figure 1 .  B lock d iagram of  the degradat ion
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index within a frame. Because the additive noise is assumed to be
stationary, rww( , )m k  does not change for all frame index m and

thus the frame index can be dropped off.  Eq. (2) becomes

r m k r m k r kyy xx ww©  ª ©  ª © ª © ª © ª= ⊗ ⊗ − +h k h k (3)

0 1≤ ≤ −m M  0 1≤ ≤ −k N .

In this paper, only one-sided autocorrelation sequence of each
frame is computed,

 r m kyy ( , ) ( , ) ( , )=
−

+
=

− −

∑1 1

N k
y m j y m j k

j

N k

0

(4)

 0 1≤ ≤ −m M  ± ²≤ ≤ −k N .

2.1 Removal of Additive Noise in Autocorrelation
Domain

Differentiating both sides of  (3) with respect to frame index m for
all k yields
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r m kyy xx©  ª ©  ª © ª © ª= ⊗ ⊗ −h k h k
(5)

0 1≤ ≤ −m M  0 1≤ ≤ −k N .

The sequence, ü ©  ª°∂ ∂r m k myy þì¾±
N −1 , is named the relative

autocorrelation sequence (RAS) of degraded speech at mth frame.
Eq. (5) demonstrates that the effect of the additive noise is
removed from the RAS of degraded speech but the convolutional
noise still exists. The RAS’s can be obtained by polynomial
approximation in a manner similar to the derivative of delta
cepstral coefficient from cepstral coefficients [12]. Therefore,
RAS’s are approximated by
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0 1≤ ≤ −m M  0 1≤ ≤ −k N

where

TL = ∑ t 2

t=-L

L
.

(7)

Eq. (6) can be interpreted as a filtering process of the temporal
autocorrelation trajectory using an FIR filter,

H z
T

z
L

t© ª = ⋅∑²
t

t=-L

L
.

(8)

2.2 Removal of Convolutional Noise in Cepstral
Domain

In Eq. (5), we can see that the effect of convolutional noise still
exists. This convolutional noise becomes a bias when RAS is
transformed into cepstral domain. If we consider the RAS as
another short-term time-domain representation of speech, we can
compute its mel-frequency cepstral coefficient (MFCC). This new
feature is denoted RAS-MFCC.

Ä Ä Ä ñÓÂÔ ú ÓÂÔ ù é 

©  ª ©  ª ªm p m p= + ³ © (9)

± ²≤ ≤ −m M  ± ²≤ ≤ −p P

were 
Ä ÓÂÔ ú ©  ªm p and Ä

ÓÂÔ ù
©  ªm p denote cepstra of RAS

of degraded speech and clean speech, respectively. C ph© ª

denotes cepstrum of convolutional noise and  p denotes cepstral
index. It is well known that cepstral mean normalization method
[2] and delta cepstral coefficients [12] are two effective methods
for removing bias in traditional MFCC feature. Here we also apply
these two methods to RAS-MFCC for removing bias and then
obtain two new features named CMN-RAS-MFCC and delta
RAS-MFCC. Both features are robust to additive noise and
convolutional noise. The operation of these two method can be
interpreted as temporal filtering in cepstral domain. Figure 2
illustrates the process for computing CMN-RAS-MFCC and delta
RAS-MFCC.

2.2.1 Cepstral mean normalization of RAS-MFCC
 (CMN-RAS-MFCC)

The CMN-RAS-MFCC is computed by subtracting the mean of
RAS-MFCC’s in a speech utterance. For a set of M RAS-MFCC’s
in an utterance, the mean vector is
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and the CMN-RAS-MFCC’s are given by

C C V pRAS y
cmn

RAS y ©  ª ©  ª © ªm p m p= −
(11)

0 1≤ ≤ −m M  ± ²≤ ≤ −p P .

2.2.2 Delta coefficients of RAS-MFCC
 (Delta RAS-MFCC)

Because the bias is invariant for frame index m, the partial
differential of RAS-MFCC with respect to frame index m can
remove the bias and yields the delta RAS-MFCC
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where
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(13)

3. EXPERIMENTS
Some experiments were conducted to evaluate the proposed
features for speech recognition in additive noise at different signal
to noise ratios and different channel distortions.

Utterances from a Mandarin isolated-digit database, collected
from 100 speakers (50 males and 50 females) by 8 kHz sampling
rate in noise-free environment, were used as clean speech. Three
sessions had been recorded. In a session, each speaker uttered one
repetition of ten isolated-digits. The first two sessions were used
for training. The third session artificially corrupted by additive
noise and convolutional noise was for testing. The white Gaussian
noise was artificially generated by computer, while the color noise
was obtained from NOISEX-92. A total of 41 channel  filter
models collected from real telephone networks in Taiwan were
randomly chosen for producing the channel effect to speech
signal. Each digit was modeled by a left-to-right HMM without
skips. Each HMM had seven to nine states depending on the

duration of digit. Each state was represented by a mixture of four
Gaussian components with diagonal covariance matrix. The first
and last states of each HMM were tied together as silence state.
Note that all the HMM models are trained from clean speech.

The experimental results for various types of features in three
testing conditions are shown in Table 1. A total of eight types of
features were evaluated. The first three features are traditional
MFCC, delta MFCC, and their concatenation. The fourth feature,
CMN-MFCC, represents traditional MFCC compensated by CMN
method. The fifth feature is the concatenation of CMN-MFCC and
delta-MFCC. The final three features are CMN-RAS-MFCC,
delta-RAS-MFCC, and their concatenation.

Three testing conditions are labeled  as “I”, “II”, and “III" in Table
1. The first condition is that the tested speech is not corrupted by
any noise. The second condition is that the tested speech is only
corrupted by convolutional noise. The third condition is that the
speech is corrupted by both convolutional noise and additive
noise. Two types of additive noise, white noise and factory noise,
were used.

3.1 No additive and convolutional noise corruption

For the case that test speech signals are not corrupted by any noise,
the concatenation of MFCC and delta-MFCC achieves the best
performance. The use of features based on RAS-MFCC can not
gain any advantages. The reason is simple. Since the test speech is
also clean speech, any noise removal operation is meaningless and
even makes worse. However, the concatenation of CMN-RAS-
MFCC and delta-RAS-MFCC is comparative to the concatenation
of traditional MFCC and delta-MFCC.

3.2 Only convolutional noise corruption

When the test speech is only corrupted by convolutional noise, the
recognition accuracy of traditional MFCC is reduced from 95.7 %
to 88.7 %.  CMN-MFCC and the concatenation of CMN-MFCC
and delta MFCC still keep their performance well because they do
have removed the channel effect. However, both CMN-RAS-
MFCC and delta-RAS-MFCC lose about 5 % in recognition rate
as comparing to their clean speech test. The concatenation of
CMN-RAS-MFCC and delta-RAS-MFCC shows some resistance
to this reduction and get only 3 % loss in recognition rate.

3.3 Simultaneous convolutional and additive noise
corruption

When the test speech is corrupted by convolutional noise and
additive noise simultaneously, the recognition rate of MFCC is
seriously decreased. Delta-MFCC, CMN-MFCC, and their
concatenation also lose their recognition rates even they are better
than MFCC. Both CMN-RAS-MFCC and delta-RAS-MFCC
show remarkable performance over those traditional MFCC
features. The concatenation of CMN-RAS-MFCC and delta-
RAS-MFCC can get further improvement in most cases.

It is worth to note that the proposed features are good in cases of
white noise and color noise.
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4. CONCLUSION

In this paper, we have derived new robust features, CMN-RAS-
MFCC and delta RAS-MFCC,  for speech recognition under the
corruption of both additive noise and convolutional noise. In
deriving these features, no prior information about noise is
necessary. The proposed method is applicable to white noise or
color noise corruption. The approach is conceptually simple and
easy to be implemented for practical applications.
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Õâãíæ ² Õéæ óæäðèïêõêðï óâõæô çðó öôêïè ÷âóêðöô õúñæô ðç çæâõöóæô¯
Ê¯ Ïð äðóóöñõêðï ãú âïú ïðêôæ¯ ÊÊ¯ Ðïíú äðóóöñõêðï ãú äðï÷ðíöõêðïâí ïðêôæ¯ ÊÊÊ¯ Äðóóöñõêðï ãú âååêõê÷æ âïå äðï÷ðíöõêðïâí ïðêôæ

Convolutional noise

Additive noise

III    White III    Factory

Feature
Dim

I

clean

II

� 20dB 15dB 10dB 5dB 0dB 20dB 15dB 10dB 5dB 0dB

1 MFCC) 12 ±¯º¶¸ ±¯¹¹¸ ±¯¶¹´ ±¯µ´º ±¯³º² ±¯²·¶ ±¯²±¸ ±¯¶µ¹ ±¯´ºµ ±¯´²² ±¯³¶· ±¯³

2 ∆MFCC 12 ±¯º¸² ±¯º¶· ±¯¹¸¹ ±¯¸¸¹ ±¯¶¶² ±¯´³· ±¯²¹µ ±¯¹º¹ ±¯¸º¹ ±¯·´´ ±¯´¸³ ±¯²º²

3 MFCC+∆MFCC 24 ±¯º¹¶ ±¯º¶´ ±¯¸´¹ ±¯¶¹· ±¯´µ¹ ±¯²³¹ ±¯²±² ±¯¸²º ±¯¶²· ±¯´²² ±¯²¸³ ±¯²²¸

4 CMN-MFCC 12 ±¯º¸º ±¯º¸´ ±¯¹³³ ±¯·¶ ±¯´¹µ ±¯³²µ ±¯²µ´ ±¯¹²³ ±¯·³º ±¯µ³º ±¯³´¸ ±¯²µ³

5 CMN-MFCC + ∆MFCC 24 ±¯º¹´ ±¯º¸º ±¯º±· ±¯¸¸¶ ±¯µµ² ±¯²ºµ ±¯²µ¹ ±¯¹¹´ ±¯·¹² ±¯µ¶µ ±¯³µ² ±¯²¶³

6 CMN-RAS-MFCC 12 ±¯º·· ±¯º²³ ±¯º²¹ ±¯¹º¶ ±¯¹¶¶ ±¯¸² ±¯µ´¶ ±¯¹º ±¯¹µ¹ ±¯¸¸² ±¯¶º´ ±¯´º³

7 ∆-RAS-MFCC 12 ±¯º´¶ ±¯¹¹´ ±¯¹¹· ±¯¹µ¹ ±¯¸¹¶ ±¯·¶¸ ±¯µ¶¸ ±¯¹·· ±¯¹´² ±¯¸¹² ±¯·²³ ±¯µ²¶

8 CMN-RAS-MFCC + ∆-RAS-
MFCC(24)

24 ±¯º¸¹ ±¯ºµ¸ ±¯ºµ¹ ±¯º´³ ±¯¹¸² ±¯¸²µ ±¯µ²² ±¯º³· ±¯¹ºº ±¯¸º¶ ±¯¶¹³ ±¯´µ¹


