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ABSTRACT

This paper presents an optimum space-time moving target indica-
tion (MTI) processor for the airborne radar. The optimization is
based on a stochastic target model, rather than deterministic target
models adopted in most space-time MTI processor designs. The
optimum solution that maximizes the improvement factor yielded
by the processor is shown to be the generalized eigenvector corre-
sponding to the smallest generalized eigenvalue of the signal and
clutter covariance matrices. A suboptimal, but computationally
simpler solution to this problem is also derived. This approach
requires the solution of a linearly constrained minimum variance
(LCMV) problem. Unlike typical LCMV problems, our solution
also calculates the response vector specifying the frequency re-
sponse along the look direction. Experimental results demonstrat-
ing the usefulness of our methods are included in the paper. The
results indicate that the suboptimal solution does not suffer from
significant performance loss.

1. INTRODUCTION

Detection of slowly moving targets by an airborne radar is often
limited by echoes from the stationary ground. Performance degra-
dation due to effects such as terrain masking can be significant in
airborne radar because of the platform motion [1],[2]. The echoes
received by a moving platform along all possible directions from
the ground are spread over a Doppler band. A two-dimensional
MTI processor, usually referred to as a space-time processor, is of-
ten employed to cope with the motion-induced clutter bandwidth.
By utilizing both spatial and temporal information, the radar sys-
tem can detect targets by distinguishing it from the clutter signal
in the azimuth-Doppler spectral domain. Space-time processors
based on an antenna array have been the subject of considerable
interest for a long time [3],[4]. The problem of finding the opti-
mum weight vector of the space-time MTI processor for the clutter
cancellation provides different solutions depending on whether a
deterministic target or stochastic target model is employed. The
most common optimization technique for the space-time MTI pro-
cessing is concerned with the detection of a deterministic signal.
The amplitude and Doppler frequency is knowna priori in prob-
lem involving the detection of deterministic signals. In the case
of stochastic target models, only the covariance matrix of the tar-
get signal is known. MTI techniques involving prefiltering and/or
Doppler analysis are known to be efficient in enhancing targets
from strong background clutters [4]. The optimization procedure
for one-dimensional (temporal only) MTI processors under the
stochastic target assumption is well-known [5]. However, little
work has been done for finding the optimal solution for the space-
time MTI processor. The main objective of this paper is to present
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an optimization procedure for a space-time MTI processor for de-
tecting targets modeled as random variables having uniform distri-
bution over the frequency of the radar. We will show in this paper
that the optimum space-time MTI processor that maximizes the
improvement factor is characterized by the generalized eigenvalue
decomposition (GEVD) of the signal and clutter covariance matri-
ces. This solution is computationally complex, and therefore we
also introduce a suboptimal solution to the problem and study its
properties. The suboptimal processor is obtained as the solution
of a linearly constrained minimum variance (LCMV) optimization
problem. However, unlike ordinary LCMV problems [6], our so-
lution also calculates the response vector specifying the frequency
response along the look direction. Experimental results as well as
theoretical calculation of the detection probabilities of the two pro-
cessors indicate that the performance loss in the computationally
simpler solution is not significant in most situations.

2. OPTIMIZATION OF SPACE-TIME MTI PROCESSOR

2.1. Problem Formulation

Consider a linear array that consists ofN uniformly spaced an-
tenna elements andM taps on each element. Letxi(k � l) de-
note the received signal at theith element andlth tap at timek.
Define theMN -dimensional stacked snapshot vectorx(k) and
the weight vectorw in the space-time MTI processor asx(k) =
[x0(k); x1(k) � � �
xN�1(k �M + 1)]T andw = [w0;0 � � � wN�1;M�1]

T . Then,
the output at timek is given byy(k) = w

H
x(k), where the su-

perscriptH indicates the complex conjugate transpose operator.
The design of the space-time processor involves the selection of
the coefficient vector such that the improvement factor of the MTI
processor is maximized. The improvement factor is defined as the
signal-to-clutter ratio at the output of the system divided by the
signal-to-clutter ratio at its input, averaged uniformly over all tar-
get velocities of interest [5]. The average improvement factor of
the MTI processor can be shown to be [7]

IF =
w
H
Msw

wHMxw
; (1)

whereMx denotes the covariance matrix ofx(k) under the hy-
pothesis that the output of the antenna elements contains clutter
plus noise only, andMs = EfssHg represents the covariance ma-
trix of the normalized target signal steering vectors. The received
signal from the target may differ froms by a complex attenuation
factor. The maximization of the improvement factor is equivalent
to the following constrained optimization problem [5] :

minimize
w

w
H
Mxw; subject to w

H
Msw = c ; (2)



wherec is a real and positive constant.
Suppose that the target signal is incident from azimuth angle

�t that is measured with respect to the normal direction of the array
and elevation angle�t. We take the first element of the array as the
reference point and assume that the propagating wave disturbance
is a narrow-band signal. Let us define a spatial steering vectora(#)

asa(#) = [1 e�j2�# � � � e�j2�(N�1)#]T and a temporal steering
vectorb($t) asb($) = [1 e�j2�$ � � � e�j2�(M�1)$ ]T , where
$t = 2vt

�0PRF
is the normalized Doppler frequency of the target

and#t = d
�0
sin�tcos�t is the spatial frequency of the target. In

this definition,vt and�0 denote the relative target speed and the
wavelength of the carrier frequency, respectively. The space-time
steering vectors can then be expressed as

s = b($t)
 a(#t); (3)

where
 denotes the Kronecker matrix product operation.
Using the above definition fors, the covariance matrixMs

can be expressed as

Ms = E
�
fb($t)b($t)

Hg 
 fa(#t)a(#t)
Hg

�
: (4)

We assume that the normalized target Doppler frequency is a ran-
dom variable distributed uniformly over [0,1]. Then, we can show
thatE[b($t)b($t)

H ] = IM , whereIM is theM�M -dimensional
identity matrix. Therefore, the signal covariance matrixMs can
be expressed as

Ms = CC
H ; (5)

whereC = IM 
 a(#t).
Let us now define a transformed coefficient vectorh ash =

C
H
w. The elements of the vectorh can be thought of as the

coefficients of the antenna signals after they have been aligned in
the direction of interest. With the help of the above definition of
h, we can reformulate the optimization problem in (2) as

minimize
w

w
H
Mxw; subject to C

H
w = h andhHh = c :

(6)
If the vectorh is given a priori, the above problem corre-

sponds to a linearly-constrained minimum variance (LCMV) prob-
lem [6]. The vectorh specifiesM scalar constraints on the re-
sponse of the array in the direction of interest. However, an impor-
tant point to note is that, unlike the ordinary LCMV problem, the
response vectorh is not knowna priori and must be designed to
satisfy the quadratic constraint in (6).

2.2. The Optimal Solution

The optimal solution to the constrained minimization problem in
(2) can be obtained using the method of Lagrange multipliers, and
can be shown to be the generalized eigenvector that satisfies

Mxw = �minMsw ; (7)

where�min is the smallest generalized eigenvalue of the matrix
pencil (Mx;Ms). In this work, we find the corresponding opti-
mal solution for the coefficient vectorh for a given look direction
� and the matrixC that is defined by the look direction of the
antenna array.

If the vectorh is givena priori, it is well-known [6] that the
optimal solution of the minimization problem described in (7) is

wo =M
�1
x C

�
C
H
M

�1
x C

��1
h : (8)

To have the complete solution to the problem, the response vector
h must also be specified properly. We can substitute (8) in (2),
and reformulate the optimization problem for designing the MTI
processor as

minimize
h

h
H
�
C
H
M

�1
x C

��1
h subject to hHh = c :

(9)
This minimization problem is equivalent to that of minimizing the
Rayleigh quotient of the vectorh, defined byR(h) = h

H(CH
M

�1
x

C)�1
h=(hHh). Letumin be the eigenvector associated with the

minimum eigenvaluemin of the matrix(CH
M

�1
x C)�1. It is

well-known [8] thatR(h) is minimized when the coefficient vec-
tor is given by

hopt = umin : (10)

By substituting (10) in (8), we can find the optimum weight vector
maximizing the improvement factor of the space-time MTI pro-
cessor to be

wopt = minM
�1
x Cumin : (11)

Finally, the maximum improvement factor possible for the space-
time MTI processor is obtained as

IFopt =
u
H
min(C

H
M

�1
x C)(CH

M
�1
x C)umin

uHmin(C
HM

�1
x C)umin

= �1
min : (12)

2.3. A Suboptimal Solution

The optimal coefficient vector obtained in the previous subsection
chooses the response vectorh so as to achieve the maximum can-
cellation of the input clutter signal in the look direction. However,
this solution involves computation of the eigenvector correspond-
ing to the minimum eigenvalue of the matrix(CH

M
�1
x C)�1, and

therefore its design can be computationally demanding. In most
applications, the covariance matrixMx is estimated online, and
the task of computing the optimal solution each time may make
real-time implementation difficult. In this subsection, we provide
a suboptimal solution that is computationally less demanding.

Our approach is based on a suboptimal solution commonly
employed in conventional MTI processors [5]. Instead of solving
the optimization problem in (9), we chooseh to be the solution of
the linearly constrained minimum variance estimator formulated
as

minimize
h

h
H
�
C
H
M

�1
x C

��1
h subject to fTh = 1 ;

(13)
wheref is the(M � 1)-element constraint vector. If we set one of
the elements of the constraint vector to be one and set all the others
to be zero, the optimization results in the linear prediction solution.
Such a solution attempts to provide maximum clutter cancellation
in the absence of the target signal. We can solve the optimization
problem using Lagrange multipliers. The response vectorhLP in
this case is given by

hLP =
(CH

M
�1
x C)f

fT (CHM
�1
x C)f

: (14)

Note that the formulation of the objective function in (13) em-
ployed the relationship between the coefficient vectorsw andh
as given in (8). Substituting (14) in (8) gives the desired weight
vector based on the linear prediction approach to be

wLP =
M

�1
x Cf

fT (CHM
�1
x C)f

: (15)



We emphasize that the linear prediction approach is a subopti-
mal technique since the optimization problem in (13) is not equiv-
alent to the problem of maximizing the improvement factor as for-
mulated in (2). However, this approach provides significant com-
putational simplicity. To operate the space-time MTI processors in
inhomogeneous backgrounds, they should be adaptive. The opti-
mal approach in this environment requires adaptive techniques for
the estimation of the minimum eigenvector, which demands signif-
icant complexity in its computation, whereas the suboptimal lin-
ear prediction approach is implementable with simpler techniques
such as the sample matrix inversion (SMI) procedure [3],[4]. A
similar method to the linear prediction approach in this paper was
suggested by Klemm [9]. In [9], a space-time adaptive filter was
designed as a simple extension to the one-dimensional prediction
error filter. The output of the clutter filter was processed by a
beamformer vector to steer the array processor toward the direc-
tion of interest. However, no optimality or suboptimality of the
approach was indicated in [9]. Our analysis shows that the lin-
ear prediction approach is a suboptimal solution to the space-time
MTI processor design problem.

3. PROBABILITY OF DETECTION OF THE
SPACE-TIME MTI PROCESSORS

In this section, we analyze the detection performance of the two-
dimensional MTI processors derived in the previous section. Such
analyses can be performed for given clutter covariance matrices.

To evaluate the detection probabilityPD and the false alarm
probabilityPFA, it is necessary to determine the probability den-
sity function of the array outputy(k) for two alternative hypothe-
ses in the MTI problem. LetH0 represent the hypothesis that the
input signal to the antenna array contains only clutter plus noise.
Similarly, letH1 denote the hypothesis that the input signal con-
tains the target signal in addition to the clutter and noise. We as-
sume that the target on boresight is modeled as a Swerling II,i.e.,
fluctuations are independent from pulse to pulse, and the received
signal is Gaussian with zero mean value. The covariance function
of the input signal may now be modeled as approximately equal
to the signal-to-clutter-plus-noise ratio (SCNR) during the interval
between pulses, and to be approximately zero for lag times longer
than the pulse interval [10]. Under hypothesisH1, the covariance
matrixMx can then be expressed as

Mx = SNR CC
H = SNRMs ; (16)

where SNRdenotes the signal-to-noise ratio. The array output
y(k) is a Gaussian random variable with zero mean value. The
envelope ofy(k) is Rayleigh-distributed for both hypothesesH0

andH1 and its probability density function conditioned on the hy-
pothesisH0 orH1 is given by

p(jy(k)j j Hi) = jy(k)j

�2
y(k)jHi

expf�jy(k)j2=(2�2
y(k)jHi

)g ;

jy(k)j � 0; i = 0; 1 :
(17)

In the above equation,�2
y(k)jHi

represents the variance ofjy(k)j
under hypothesisHi. Given the above information about the sig-
nals involved in the MTI problem, we can evaluatePD andPFA
to be

PD = exp(�Td=2�
2
y(k)jH1

) ; (18)

and
PFA = exp(�Td=2�

2
y(k)jH0

) ; (19)

respectively, whereTd denotes the detection threshold employed
by the procedure. The two values of the variances required to com-
plete the evaluation of the detection and false alarm probabilities

can be calculated in a straightforward manner for the optimal and
linear prediction-based processors. The results are as follows.
Optimal Method :

�2
y(k)jH0

= Efjy(k)j2 j H0g = min (20)

and
�2
y(k)jH1

= Efjy(k)j2 j H1g = SNR (21)

Linear Prediction :

�2
y(k)jH0

= w
H
LPMxwLP =

1

fT (CHM
�1
x C)f

(22)

and

�2
y(k)jH1

= SNRw
H
LPMswLP

= SNR

w
w
w
w
f
T (CH

M
�1
x C)

fT (CHM
�1
x C)f

w
w
w
w

2

; (23)

wherek(�)k denotes the Euclidean norm of(�).

4. COMPUTER SIMULATIONS

This section presents the results of several simulation experiments
that evaluated the performance of the space-time MTI processors.
A uniform linear array with fourteen antenna elements spaced half
a wavelength of the carrier frequency apart was simulated in all the
experiments. The radar PRF is 625 Hz and 16 pulses are transmit-
ted with a carrier frequency of 435 MHz. The platform altitude is
1 km, the platform speed is 100 m/s, and the range of interest is 2
km.

The clutter covariance matrix was estimated using the model
described in [2] as superposition of 160 independent clutter sources
that are evenly distributed in azimuth about the radar. Figure 1
shows the space-time spectrum of the clutter signal used in the ex-
periment. The space-time weight responses of the MTI processor
are shown in Figure 2. The results in Figure 2 indicate that both the
optimal and the linear prediction technique enable the MTI proces-
sor to critically reject the incoming clutter signals throughout the
entire azimuth angle. The detection performances of the MTI pro-
cessors are also shown in Figure 3. In detection tests, we examined
the experimentalPD for SNR values in the range of -10 to 25 dB
in 0.5 dB increments. ThePD values were evaluated using (18)
� (23) atPFA = 10�5. Even though the optimal method yields
higher detection performance than the linear prediction method for
all SNR0s, the difference is not significant. Additional compar-
isons between the performances of the two processors were made
in terms of the improvement factor, and the results are summa-
rized in Table 1. As one can expect, the optimal method always
performs better than the linear prediction method. However, in
most of the cases considered, the performance degradation in the
linear prediction approach is not significant.

5. CONCLUSIONS

This paper presented an optimum space-time MTI processor for
airborne radar. The optimization is based on a stochastic target
model in which the target is modeled as a random variable having
uniform distribution over the PRF of the radar. The optimum solu-
tion that maximizes the improvement factor yielded by the proces-
sor is given by the generalized eigenvector corresponding to the
smallest generalized eigenvalue of the signal and clutter covari-
ance matrices. A suboptimal, but computationally simpler solu-
tion based on the linear prediction approach was also derived in
the paper. The performance of the two processors were evaluated



in terms of the detection probability and the improvement factor in
an airborne radar environment. Results of such evaluations showed
that both the optimal and the linear prediction techniques critically
reject clutter signals arriving from the azimuth angle of interest.
The optimal technique provides higher improvement factor than
the linear prediction technique. However, the performance dif-
ference between the two methods was relatively small in most of
the cases considered. Consequently, the space-time MTI processor
based on the linear prediction approach may be a good candidate
for use in airborne radar systems.
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Figure 1: Space-time spectrum of the input data. Scenario :�a =
0o, �v = 0:01m=s, CNR=30dB,M=5.
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(a) Optimal approach
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(b) Linear prediction approach

Figure 2: Space-time weight responses of the space-time MTI pro-
cessors.
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Figure 3: Probability of detection versus SNR.

Table 1: Comparison of the improvement factors due to the opti-
mal and the linear prediction techniques.

�a �v CNR N = 5 N = 7
[deg] [m=s] [dB] IFopt IFLP IFopt IFLP

[dB] [dB] [dB] [dB]

0
0.01

30 11.36 10.98 11.40 10.93
60 11.24 10.38 11.32 10.48

0.50
30 11.32 10.30 11.37 10.56
60 11.13 10.06 11.23 9.75

60
0.01

30 11.13 10.54 11.24 10.53
60 10.89 9.55 11.08 9.48

0.50
30 11.11 9.05 11.22 9.18
60 10.22 9.85 10.74 8.64


