
4-WAY SUPERSCALAR DSP PROCESSOR FOR AUDIO
CODEC APPLICATIONS

Joon Seok Kim* Sun Kook Yoo** Sung Wook Park* Nam Hoon Jung*
Woo Suk Ko* Keun Sup Lee* Dae Hee Youn*

*A.S.S.P. Laboratory, Department of Electronic Engineering ,Yonsei University
**Department of Medical Engineering, Yonsei University

mania@cyclon.yonsei.ac.kr

ABSTRACT
The recent audio CODEC (Coding/Decoding) algorithms are
complex of several coding techniques, and can be divided into
DSP tasks, controller tasks and mixed tasks. The traditional DSP
processor has been designed for fast processing of DSP tasks
only, but not for controller and mixed tasks. This paper presents
a new architecture that achieves high throughput on both
controller and mixed tasks of such algorithms while maintaining
high performance for DSP tasks. The proposed processor, YSP-3,
operates four functional units (Multiplier, two ALUs, Load
/Store Unit) in parallel via 4-issue super-scalar instruction
structure. The performance evaluation of YSP-3 has been done
through the implementation of the common DSP algorithms and
AC-3 decoder.

1. INTRODUCTION

The audio CODEC algorithm (ex. MPEG-2[1] or AC-3[2]) can
be divided into three parts; (1) Controller tasks: parsing bit-
stream, setting the operating mode and communicating with other
systems; (2) DSP tasks: filtering, multiplying matrixes, and
various transforms; (3) Mixed tasks: computing masking curves
based on psycho-acoustic model, searching tables, extracting
scale-factors and so on. The DSP tasks are composed of
predetermined number of repetition on MAC computation. But
the controller tasks and the mixed tasks are composed of many
run-time determined procedures requiring simple computations
(e.g. bit-wise logical operation, a multiplication, an addition, and
a shift).

Considering the processing load of the CODEC algorithm, (2)
takes the half, and (1), (3) take the other half [3]. In this point of
view, the traditional DSP processors are inadequate for such
CODEC application even though they show good performance in
DSP tasks. The reason is that they have low performance in the
controller and the mixed tasks. Their low throughput results from
the fact that functional units (FU’s), such as multiplier, ALU,
barrel shifter, are connected in serial way. They are designed in
such a way to process repetitive MAC computation fast and
efficiently because the core of DSP algorithms is the repetition of
MAC. That is, they can’t fully utilize all of their FU’s except
when they execute MAC instruction.

To resolve the problem of the traditional DSP processor, and
maintain their high performance for the DSP tasks, there have
been many works [4][5][6]. In those works, the performance in

controller and mixed tasks is enhanced, however, the problem of
low efficiency and flexibility in utilization of their functional
units exists yet. To resolve all of the problems, we connect FU’s
in parallel way, and let each unit process one instruction in
parallel. We have decided four FU’s, multiplier, two ALUs, and
Load/Store unit, therefore, four instructions can be executed per
one cycle. In this architecture, the proposed processor functions
as a 4-issue RISC processor for the controller and the mixed
tasks, which result in the better performance than a conventional
DSP processor without degrading the performance for the DSP
tasks.

While VLIW instruction structure is very good approach to this
processor, the main disadvantage of that is the instruction code
size explosion when a program does not offer enough parallelism
at the instruction level [7][8]. Another approach is a super-scalar
scheme. Though the issue process of the super-scalar scheme has
overhead expense, it can be simple and low-cost task if we
choose in-order issue and in-order completion policy with good
arrangement of instructions at compile time [9].

2. ARCHITECTURE

The 4 way super-scalar DSP processor, YSP-3, has 3 pipeline
stages.

• Pre-Fetch: Fetches the 4-instruction words from
memory into PFQ’s (pre-fetch queues) and updates
program counter.

• Decode and Issue: Decides the number of instructions
that could be executed simultaneously (issue) among
PFQ’s and decodes them (decode).

• Execute: Executes the issued instructions.

In order to operate 3 pipeline stages in parallel, YSP-3 has 3
independent units for each stage: Pre-Fetch Unit (PFU), Issue
and Decode Unit (IDU), and Execution Unit (EU). Figure 1
illustrates overall architecture and pipeline operation of YSP-3.

2.1 Execution Unit

As mentioned previously, EU has 4 FU’s: Multiplier unit (MU),
ALU1, ALU2, and Load/Store Unit (LSU). Figure 2 shows the
FU’s in EU.

• MU multiplies the two 16-bit inputs, and carries the
product to 32-bit result bus.

• The 40-bit ALU1 is up to arithmetic and logical
operations: addition/subtraction, increment, negation,
conversion to absolute value, AND, OR, XOR, and
NOT. In addition to the basic operations, ALU1
provides several special operations; (1) Arithmetic
shifting: ALU1 has 40x16 bit barrel shifter; (2) Parsing
bit-streams: ALU1 has bit-unpacking module to parse
the bit-stream fast, because the form of compressed (or
transmitted) data in CODEC algorithm is bit-stream.
The module can parse the 1~16 bits per one cycle from
1k-byte internal FIFO, which is the temporal storage for
input bit-stream. (3) Rounding: RND instruction is
supported. It can be used to reduce the bit-width of the
data when the 32-bit data is stored in 16-bit storage.
With round-to-nearest-even scheme, YSP-3 statistically
minimizes the errors of 40-bit fixed-point arithmetic
[10].

• LSU accesses all data memories, which consist of
internal memory (16-bit and 32-bit RAM, ROM) and
external memory (16-bit RAM only). As the traditional
DSP processor, it has the post-modifiable address
generator providing linear, circular and bit-reverse
addressing modes.

• ALU2 has the same 40-bit ALU as ALU1 to perform
arithmetic and logical operations. Additionally, it has a
special privilege to read a data from the internal data
ROM. In case of DSP tasks, especially convolution (e.g.
FIR, IIR filtering), a data sample in the data RAM and a
filter coefficient in the data ROM are fetched and

multiplied. YSP-3 has separate data and address buses
for both RAM and ROM, the parallel access to them is
possible to MAC without any data latency. While LSU
has the higher priority in access the data ROM, ALU2
takes it up when LSU is busy for RAM. Post-
modification of address is also provided using its own
ALU.

• All FU’s are designed to move an immediate data given
by instruction to register file.

• Register File is composed of thirteen 16-bit General
Purpose Registers (R0-R12), four 32-bit Double Word
Registers (DWR0-DWR3), four 40-bit Accumulators
(ACC0-ACC3), four 14 bit Address Registers (AR0-
AR3), and two 14 bit Modify Registers (MR0, MR1).
The DWR can be split into an upper and a lower 16-bit
part, so it holds two 16-bit words or one 32-bit double
precision data. AR is used to hold data address, and MR
holds the value to modify AR. When AR and MR are
used in pair for indirect addressing mode, selected AR is
post-modified by MR. Every register except AR and
MR in the register file has 4 write ports and 7 read ports.
AR has 8 read and 5 write ports, and MR has 8 read and
4 write ports. If any input of FU’s wants more bits than
bit-width of selected register, then sign-extension is
occurred (e.g., one input to the ALU1 is 16-bit GPR,
then it is sign-extended to 40 bits).

14

RAM
ROM4040

16 16

Mul ALU Shift

4040

ALU ALUUnpack MMU

write port 2write port 1

Read
port 3

Read
port 1

Read
port 2

Read
port 4 FIFO

Read
port 5

Read
port 6

Read
port 7

write port 4 AR write port 5

MR read
port 8

MU ALU1 LSU

14 145
16

32 40 40 16 40

AR read
port 8

write port 3

ALU2

Figure 2. Execut ion uni t .

Addr.

4 instr.

NI

4 instr.

PC

Program Memory

PFU IDU

PFQ0

PFQ1

PFQ2

PFQ3

ID for MU

ID fo r ALU1

ID fo r ALU2

ID for LSU

M U

A L U 1

A L U 2

L S U

Regis ter
Fi le

EU

P C
Upda te
Log ic

Data Memory

Data

PFU : Prefetch unit
IDU : Issue and Decode Uni t
EU : Execut ion Unit

NI : Number of Issue
ID : Instruct ion Decoder

ÏÅ ¯

ÏÅ °

ÏÅ ±

ÏÅ ²

ÈÃ ¯

ÈÃ °

ÈÃ ±

ÈÃ ²

Ä÷ ¯

Ä÷ °

Ä÷ ±

ÏÅ ³

ÏÅ ´

ÏÅ µ

ÏÅ ¶

ÈÃ ²

ÈÃ ³

ÈÃ ´

ÈÃ µ

Ä÷ ²

Ä÷ ³

ÏÅ ¶

ÏÅ ·

ÏÅ ¸

ÏÅ°¯

ÈÃ ´

ÈÃ µ

ÈÃ ¶

ÈÃ ·

Ä÷ ´

Ä÷ µ

ÏÅ ¸

ÏÅ°¯

ÏÅ°°

ÏÅ°±

ÈÃ ·

ÈÃ ¸

ÈÃ°¯

ÈÃ°°

Ä÷ ·

Ä÷ ¸

Ä÷ ¶

Ä÷°¯

Ä÷°°

n=0
NI=4

n=1
NI=3

n=2
NI=2

n=3
NI=3

n=4
NI=4

n=5
....

(a) Block diagram.

I
S
S
U
E

Figure 1. Overal l architecture and operat ion.
(b) Operat ing diagram.

ID : Issue and Decode

2.2 Pre-fetch Unit and Issue-and-Decode Unit

For simplicity, we choose in-order issue and in-order completion
policy, though in-order issue policy has lower issue rate than out-
of-order. However, if instructions are arranged at compile time to
avoid conflicts and dependencies, it can have the same issue rate
as out-of-order policy. If instructions are issued in order, in-order
completion is guaranteed because all FU’s are designed to
perform in a single cycle.

 In PFU, PC (Program Counter) holds the first address of four
instructions to be fetched. PFU fetches 4 instructions from
@(PC) to @(PC+3), and stores them in PFQ0-PFQ3. The PC at
n’th cycle is

 PC(0) = 0,
 PC(n+1) = PC(n) + NI(n)

 , where NI(n) given by IDU is the number of issued instructions
at n’th cycle. When one of the program flow control instructions,
such as CALL, RTN(Return), JUMP, BR(branch), and LOOP is
issued, NI(n) is set to 4.

IDU issues from PFQ0 to PFQ3 sequentially (in-order). It checks
the resource conflict which arises when two instructions must use
the same resources at the same time (ex. two of four instructions
require multiplier unit) and true data dependency which arises
when an instruction uses a value produced by a previous
instruction. IDU meets any conflict or dependency, it stops
issuing immediately and then assigns issued instructions to FU’s.

Instruction has 25 bit width and is divided into five sub-fields,
(1) op-code field (5-bit), (2) destination register field (5-bit), (3)
memory addressing mode field (2-bit), (4) 2’nd source register
field (5-bit), and (5) 1’st source register/AR and MR pair field
(8-bit). In YSP-3, the resource conflict is checked by op-code
field and data dependency by 5-bit destination field and 13 bit
1’st and 2’nd source operands fields.

The instructions that cause abrupt change of PC, for example,
JUMP, BR (conditional jump), CALL, RTN (return), and LOOP
is always issued solely to discard the instructions in PFQ’s. For
PFU has the all resources to control the program flow control
(PC, PC Stack, Loop Counter, and Loop Stack), it supervises and
manages the program flow by modifying it’s resources. For
branch, YSP-3 provides three branch prediction strategies by
following instructions: BRT (predict branch would be taken),
BRN (predict branch would not be taken), BRD (delayed branch).
While BRT or BRN may generate one-cycle latency in case of
failure on branch prediction, BRD removes that latency. Lastly,
zero latency loop capability is provided.

3. OPERATION

Figure 3 illustrates program and execution for a 64-tap FIR
filtering with coefficient h(i), input x(n) and output y(n), which is
a typical example for digital signal processing applications. For
this operation, all units, MU, ALU1, ALU2, and LSU, work as
follows:

(1) An address pointer ar0 is used to load the data elements, x(n)
from the data RAM into r0.; (2) an address pointer ar1 is used to
load the coefficients, h(i) into r1; (3) ar0, ar1 are post-
incremented using the value of mr0. LDRAM is executed in LSU,

(a) 64-tap FIR f i l ter code.

PF

NI=4

movev ar0, ^sample ; ar0= ptr. of x(n)
movev ar1, ^coeff ; ar1= ptr. of h(i)
movev ar2, ^output ; ar2= ptr. of y(k)
movev mr0, #1 ; mr0= post-increment
 ; value

ldram r0, (ar0, mr0) ; r0= x(0)
ldrom r1, (ar1, mr0) ; r1= h(0)
movev acc1, #0 ; clear acc1

mult acc0, r0, r1 ; acc0=x(0)*h(0)
ldram r0, (ar0, mr0) ; r0= x(1)
ldrom r1, (ar1, mr0) ; r1= h(1)
movev cntr, #62 ; repeat 62 times

loop :end ; following 4 instr.

 add acc1, acc1, acc0; acc1 = acc1 + acc0(n)
 mult acc0, r0, r1 ; acc0 = x(n)*h(i)
 ldrom r1, (ar1, mr0); r1 = h(i++)
end:
 ldram r0, (ar0, mr0); r0 = x(n++)

add acc1, acc1, acc0 ; acc1=acc1+acc0(62)
mult acc0, r0, r1 ; acc0=x(63)*h(63)

add acc1, acc1, acc0 ; acc1=acc1+acc0(63)

shift acc1, acc1, #8 ; bit-width adjustment
 ; 40 bit -> 32 bit

rnd r0, acc1 ; round(32bit->16bit)

store r0, (ar2, mr0) ; y(k++)=r0

PF
PF
PF

ID
ID
ID
ID

EX
EX
EX
EX

EX
EX
EX

PF
PF
PF
PF

ID
ID
ID
ID

EX
EX
EX
EX

PF
PF
PF
PF

ID
ID
ID
ID

EXPF
PF
PF
PF

ID
ID
ID
ID

EX
EX
EX
EX

PF
PF
PF
PF

ID
ID
ID
ID

movev
movev
movev
movev
ldram
ldrom
movev
mult
mult

ldram
ldrom
movev
loop
add

mult
ldrom

add
mult

ldrom
ldram

EX
EX
EX
EX

PF
PF
PF
PF

ID
ID
ID
ID

add
mult

ldrom
ldram

....... NI=3 NI=4 NI=1 NI=4 NI=4

(b) P ipe l ine d iagram (The shade means the
instruct ion in i t can not be executed concurrent ly) .

Figure3. FIR f i l ter code and pipel ined execut ion.

and LDROM in ALU2, as mentioned 2.1.; (4) r0 and r1 are
multiplied into 40-bit acc0 in MU; (5) ALU1 accumulates acc0
into acc1.

Thus, the 64 times MAC computation is executed in 67 cycles
using pipeline manner. The each empty line in the Figure 3.(a)
isolates the instructions that can be issued together.

4. IMPLEMENTATION DETAILS AND
PERFOMANCE

The YSP-3 has been described in VHDL and synthesized using a
standard cell of 0.6 um-3ML CMOS technology. The total gate
count of YSP-3 is 43993.3 gates and a performance of 33 MHz
has been achieved. YSP-3 has the peak performance of 132
MIPS when the issue rate is 4, which is optimal. Even though the
issue rate is 1, the smallest, YSP-3 has at least 33 MIPS.

For performance measurement, the cycle-by-cycle simulator of
YSP-3 has been written in C language. We have written hand-
code assembly program for common DSP algorithms and AC-3
decoder, and completed simulation in the simulator.

Table 1 shows the average execution time for decoding each
frame of 5.1 channel AC-3 bit-streams. Bit allocation decoding,
which is the most complex process mainly composed of the
mixed tasks [3], is executed in 2.561 ms. Mantissa decoding
process including multiplication of coupling coordinates, which
also consists of mixed tasks, has the execution time of 3.327ms.
The key to achieve such a high performance on controller and
mixed tasks is to utilize all the functional units in full and
flexible manner.

The performances for four DSP algorithms are shown in Table 2,
which shows that YSP-3 has also good performance for DSP
tasks. The YSP-3 performs the radix-2 1024-point complex FFT,
and real FFT in 1.094 ms and 657.2 us, respectively. It is notable
that each FFT includes round operation at every butterfly.

Table 1. Performance on the part of 449 kbps AC-3 algorithm

The Part of AC-3 Algorithm Execution Time

Exponent Decoding 380.8 us

Bit Allocation Decoding 2.561 ms

Mantissa Decoding 3.327 ms

Channel Decoupling 142.9 us

Table 2. Performance on the DSP tasks

The Part of AC-3 Algorithm Execution Time

100-tap FIR filter 3.303 us

Two 8x8 matrix product 15.70 us

Radix-2 1024 point complex FFT 1.094 ms

Radix-2 1024 point real FFT 657.2 us

5. CONCLUSION

 The 4-way super-scalar processor, which performs controller
and mixed tasks efficiently as well as DSP tasks, is presented.
The proposed processor has 4 functional units aligned in parallel
way, and adopts the 4-way super-scalar instruction structure.
Because YSP-3 can operate each functional unit independently,
it is suitable for controller and mixed tasks that consist of several
simple operations. Besides, it can operate 4 functional units in
pipelined manner to process MAC efficiently, it also shows good
performance on the DSP tasks.

YSP-3 provides very high degree of flexibility in exploiting
functional units, so it can maximize the performance on any
application by arranging the instructions to avoid conflict or
dependency. In not only the audio CODEC application, but also

multimedia and telecommunication applications, the YSP-3 is
well suited as a core technology for an ASIC design, so it offers a
simplified system design with high performance at low cost. As
we are trying to construct the C compile for this model, the
application would be implemented without additional efforts.

6. REFERENCES
[1] ISO/IEC JTC1/SC29/WG11 No.703 “Generic Coding of

Moving Pictures and Associated Audio – CD 13818-3(Part3.
MPEG-Audio)” Mar., 1994.

[2] Advanced Television Systems Committee(ATSC) Standard
Doc. A/52, “Digital Audio Compression Standard(AC-3)”,
Nov., 1994.

[3] Steve Vernon “Design and implementation of AC-3 coders”,
IEEE Transactions on Consumer Electronics, Vol. 41, No.
3, pp. 754-759, Aug., 1995.

[4] Christoph Baumhof, “A Novel 32 Bit RISC Architecture
Unifying RISC and DSP”, ICASSP, pp. 587-590, 1997.

[5] He Qing and Hou Chao Huan, “RNIW: A novel general-
purpose DSP architecuture”, ICASSP, pp. 3302-3305, 1996.

[6] H. Sato, E. Holmann, “A dual-issue RISC processor for
multimedia signal processing”, ICASSP, pp. 591-594, 1997.

[7] Colwell, R. P. et al., “A VLIW architecture for a trace
scheduling compiler”., IEEE Transactions on Computers,
37: (8) (1998).

[8] Joseph A. Fisher, “Very Long Instruction Word
Architectures and the ELI-512”, Proceedings of the 10th

Symposium on Conputer Architecture, pp. 140-150, IEEE,
June, 1983.

[9] Mike Johnson, “Superscalar Microprocessor Design”,
Prentice Hall, Inc., pp. 17-24, 1991

[10] Istael Koren, Computer Arithmetic Algorithms, Prentice-
Hall International Editions, pp. 58-68, 1993.

