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ABSTRACT

We use reversible jump Markov chain Monte Carlo (MCMC)
methods to address the problem of model order uncertainty in au-
toregressive (AR) time series within a Bayesian framework. Effi-
cient model jumping is achieved by proposing model space moves
from the the full conditional density for the AR parameters, which
is obtained analytically. This is compared with an alternative
method, for which the moves are cheaper to compute, in which
proposals are made only for new parameters in each move. Re-
sults are presented for both synthetic and audio time series.

1. INTRODUCTION

When fitting an autoregressive model to Gaussian time series data,
often the correct order of the model is unknown. The model order
cannot be estimated analytically by conventional Bayesian tech-
niques when the excitation variance is unknown.

We present reversible jump MCMC methods [1] for drawing
samples from the joint posterior of all the unknowns, from which
Monte Carlo estimates of the quantities of interest, such as inter-
polated values, can be made. This has the advantage that these es-
timates will be based on a mixture of the probable models, rather
than just the single most probable one.

Previous work on MCMC autoregressive model selection
has parameterised the model using partial correlation coefficients
[2, 3] or pole positions [4]. These have a simple physical interpre-
tation for certain types of signal and allow stability to be enforced
in a straightforward manner.

We use the AR parameters,a, directly. This allows us to use
the full conditional density fora, which is available analytically,
to propose efficient reversible jump MCMC moves.

While Barbieri & O’Hagan [3] also use reversible jump
MCMC, Barnettet al. [2] and Huerta & West [4] use techniques
similar to stochastic search variable selection [5], avoiding chang-
ing the dimension of the parameter vector by including all param-
eters, up to an arbitrary maximum order, at each iteration.

2. MODELLING FRAMEWORK

2.1. Autoregressive time series model

We model the signalfytg as:

yt = et +
kX
i=1

a
(k)
i yt�i
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wherefetg is a white, Gaussian excitation sequence with variance
�2e , anda(k) is the AR parameter vector for akth order model.
This can be rewritten in matrix-vector form as:

e = Ay = y1 �Y
(k)
a
(k)

wherey0 andy1 are formed by partitioningy into, respectively,
the firstk values and the remainder, andA andY(k) take appro-
priate forms.

Since the excitation sequence is Gaussian, the (approximate)
likelihood takes the form [6,xA7.4]:

p(y j k; a(k); �2e ) � p(y1 j y0; k; a
(k); �2e )
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wherene is the length ofe andy1.

2.2. Prior distributions

We choose simple conjugate prior distributions:

p(k) =

(
1

kmax
k 2 f0; 1; : : : kmaxg

0 elsewhere

p(a(k) j k) = N
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(k) j 0; �2a Ik
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where the inverted-gamma distribution (seee.g.[7]) is defined for
positive parameters� and�, and positivex, as:

IG(x j �; �) / x�(�+1) exp(��=x)

which tends to the Jeffreys’ prior as�; � ! 0. k, a(k), �2a and�2e
are assumed to bea priori independent.

2.3. Bayesian hierarchy

The posterior density for the parameters is then:
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3. REVERSIBLE JUMP MCMC

Metropolis-Hastings algorithms [8, 9] developed from molecular
simulations as means to produce a Markov chain which converges
to a required equilibrium distributionp(�), without the need to
sample directly from any inconvenient density.

Each step consists of choosing which subset of the parameters
� to update, proposing new values for them by drawing from an
arbitrary, convenient densityqu(�0u j ��u), calculating the accep-
tance probability for this move,A(� ! �0), then either accepting
the move, setting the parameters to the proposed values, or reject-
ing the move, not changing any parameter values.

Reversible jump MCMC [1] is a generalisation which intro-
duces moves between parameter spaces of different dimension-
ality, whilst retaining detailed balance [9], which is required for
convergence, within each type of move.

If J(k ! k0) is the probability of proposing a move from a
parameter space of dimensionk to one of dimensionk0, and�
contains those parameters which are present, and have the same
meaning, in models of both dimensionalities, then the required ac-
ceptance probability is:

A
�
(k; �(k))! (k0; �(k

0))
�
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0) j �)
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4. SAMPLING STRATEGY

The parameters to be sampled comprisek; a(k); �2e and�2a .

4.1. Model moves

Samplingk involves a change in dimensionality, so we use a re-
versible jump move. First, we choose to propose a move from or-
derk to orderk0 by samplingk0 from the distributionJ(k ! k0),
for which we use a discretised Laplacian density (seex4.3). We
then sample a new parameter vectora(k

0) from a proposal density:

a
(k0) � q(a(k

0) j k0; a(k);y; �2a ; �
2
e ) (2)

Note that�2a and�2e remain unchanged during model moves.

4.1.1. Full parameter vector proposals

As the proposal density, we can use the full conditional for the
complete parameter vectora(k

0), which is available analytically
[10]:

q(a(k
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Rather than drawing a value ofa(k
0), then simply substituting

equation (3) and the likelihood and priors into equation (1), which

could lead to numerical problems, we can use the ‘Candidate’s
Identity’ [11]:

p(k; a(k) j y; �2a ; �
2
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to simplify equation (1) in this case to:
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We can expressp(k j y; �2a ; �
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which allows us to simplify equation (4) to: [12]
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where, to eliminate dependence on the scale of the signal, the same
vector y1, and hence lengthne, is used for both model orders
being considered,i.e. all probabilities are conditional on the first
max(k; k0) values ofy. This expression is independent ofa(k

0),
so the sampling operation of equation (2) need only be performed
if the move is accepted.

4.1.2. Partial parameter vector proposals

Alternatively, we can propose only the additional AR parameters
introduced by the move. This is quicker to compute than equa-
tion (3), but is likely to be susceptible to local maxima because
low order parameters remain fixed in moves between higher order
models. It is hence important also to samplep(a(k) j k;y; �2a ; �

2
e )

from time to time (seex4.2.1).
For partial parameter vector proposals, the acceptance prob-

ability takes different forms for ‘birth’ (k0 > k) and ‘death’
(k0 < k) moves:1

‘Birth’ move In this case, we are proposing

a
(k+n) =

�
a(k)

au

�
(7)

whereau are then new parameters drawn from the full conditional
posterior density [10]:

au � q(au j k + n; a(k);y; �2a ; �
2
e ) / N

�
au j �au ;Cau

�
1‘Life’ moves (k0 = k) need not be proposed at all.



where

C
�1
au

= ��2
e Y

(k+n)
u

T
Y

(k+n)
u + ��2

a In

�
au

= ��2
e Cau

Y
(k+n)
u

T �
y1 �Y

(k+n)
�u a

(k)�
where the matrixY is partitioned columnwise asYu andY�u.
Again, we can simplify equation (1) by marginalisingau to give:
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‘Death’ move Here, no new parameters are being proposed;
we merely truncatea(k) at thek0th parameter. By definition,

A
�
(k; a(k)) ! (k0; a(k

0))
�
= min(1; Q)

+

A
�
(k0; a(k

0)) ! (k; a(k))
�
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Q
)

so the calculations are similar to those for the acceptance proba-
bility for the corresponding ‘birth’ move.

4.2. ‘Null’ moves

Sampling froma(k), �2e or �2a with fixed model orderk does not
involve any change of dimensionality, so the treatment is more
straightforward.

4.2.1. Sampling the AR parameter vector

We can samplea(k) directly from its full conditional (eq. 3) in a
Gibbs move, for which the acceptance probability is always1.

4.2.2. Sampling the noise variance

We can also sample�2e using a Gibbs move. To do this, we require
the full conditional posterior distribution:
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We can sample from this inverted-gamma density directly.

4.2.3. Sampling the parameter variance

Similarly, we can use a Gibbs move to sample the hyperparameter
�2a :

p(�2a j y; k; a(k); �2e ) = p(�2a j a(k))
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Figure 1: Orchestral recording (from top): Signal; Sampled model
order values for full proposals (solid) and partial proposals (dot-
ted); Monte Carlo estimate ofp(k j y); MDL values.

where

�sa = �a +
1
2
k and �sa = �a +

1
2
a
(k)T

a
(k)

4.3. Move selection

For simplicity, a partially systematic scan was chosen: each pro-
posed model move is followed by a�2e move and a�2a move, but
samplinga(k) is a relatively expensive move, so it is performed
randomly, less frequently.

The choice of model move is determined by the function
J(k ! k0). To ensure good convergence, we want most proposed
jumps to be small, but occasional large ones to occur too. We have
chosen a discretised Laplacian density:

J(k ! k + n) / exp(�� jnj)

5. RESULTS

The sampler was implemented as described for both full and partial
parameter vector proposals.

5.1. Audio data

The samplers were used to fit an AR model to a block of1000
samples from a44:1kHz sampled orchestral music recording. Fig-
ure 1 shows the signal, along with the results of running the both
samplers.

Although both versions converge to roughly the same model
order distribution, it can be seen that the sampler using partial pro-
posals appears to generate a less well mixed chain than the full
proposal sampler.

The Monte Carlo estimate of the marginal posterior density
p(k j y) was obtained by calculating the histogram ofk having
discarded the values from the first50 iterations as “burn-in” from
the full parameter proposal sampler’s output. Clearly, the maxi-
muma posterioriestimate of the model order is26, which agrees
with the global minimum of the MDL criterion, which is plotted
for comparison.
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Figure 2: Convergence behaviour from100 runs with synthetic
AR(20) data:(left) Full proposals;(right) Partial proposals;(top)
Evolution of the model order histogram – darkness represents fre-
quency;(bottom) Frequency of choosingk = 20. Note differingx
scales.

5.2. Synthetic data

To investigate convergence behaviour,3500 samples were syn-
thesised from an AR(20) process, and an ensemble of100 runs
were made with each sampler. The results are shown in figure 2.
For each iteration, the top plots show the model order histogram,
across the ensemble, and the bottom plots show the proportion of
the ensemble which have the ‘correct’ value of model order.

It can be seen that all the runs of the full proposal sampler
appear to converge within50 iterations, whereas, even after1000
iterations, some15% of the partial proposal sampler runs have not
converged.

6. DISCUSSION

This reversible jump sampler provides a fast, straightforward way
to cope with AR model order uncertainty in an MCMC framework.
Using the raw AR parameters allows the methods presented here to
take advantage of the partially analytic structure of the AR model
to speed convergence. The computation involved could probably
be further reduced, for a given class of problems, by using a fully
random scan and adjusting the move probabilities.

Proposing the full parameter vector in each move leads to a
reliable sampler. Whilst proposing only part of the parameter vec-
tor makes acceptance probabilities faster to compute, the resulting
Markov chain is more highly correlated.

Furthermore, whilst the two methods behave similarly for
many modelling problems, in some cases, such as the AR(20) pro-
cess of figure 2, the partial parameter vector proposals method is
consistently very slow to converge. This is probably due to the the
transition of equation (7) being quite unnatural when considered
in terms of, for example, pole positions; models of different order
to the correct one, but with similar values for common parameters,
may have low likelihood.

We do not enforce model stability, as this is difficult to in-
corporate into a prior on the AR parameters. Rejection sampling
could be used, but the marginalisation in equation (5) would need
to be over a parameter space containing only stable models. This
problem will be explored in future work.
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