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ABSTRACT

In this paper, an e�cient blind identi�cation algorithm for
multichannel FIR systems was proposed based on a deter-
ministic model of the channel input. By decoupling the
multichannel identi�cation, the proposed method was able
to estimate individual channel responses separately without
having to solve for the augmented channel responses. The
algorithm was implemented using linear prediction tech-
niques. It was computationally e�cient and suitable for
real-time applications. Computer simulations were used to
demonstrate the e�ectiveness of the proposed algorithm.

1. INTRODUCTIONS

Recently, the problem of blind channel identi�cation has
been extensively studied by researchers since the pioneer-
ing work by Sato [1]. By blind, we mean that the channel
responses are estimated solely based on the sensor outputs
without using the training sequences. Blind identi�cation
is attractive for many applications when the transmitted
signals are not accessible.

For the last few years, it has received considerable at-
tention in communications and signal processing [2]. Most
of the earlier approaches to blind identi�cation are based
the use of higher-order statistics, which are known to suf-
fer from many drawbacks. They require a large number
of data samples and a heavy computational burden, mak-
ing them unattractive for practical applications. A recent
major progress was made by Tong, Xu and Kailath [3], in
which they explored the cyclostationary properties of an
oversampled communication signal to estimate the channel
responses based on the second-order statistics of the sensor
outputs. Since then, several approaches have been devel-
oped including the eigenstructure-based methods [4][5] and
the least squares (LS) approach [6]. The LS approach is
based on the deterministic modeling of the source input
and does not require explicit statistical knowledge of the
channel input. This is important for many practical appli-
cations where such information is usually not available. The
LS approach uses the cross relation between each output
pairs to estimate the augmented channel responses. When
the channel order is relatively small, the computation cost
may be a�ordable for real-time implementation. However,
for some applications such as speech dereverberation and
echo cancellation, since each channel order is usually at the
level of several hundreds, the increased dimension of the

augmented channel responses will lead to signi�cantly in-
creased computational burden, making it di�cult for real
time implementations. Also, since the LS approach deals
with the augmented channel responses, it detects the max-
imum channel order instead of individual channel order.
This may cause a severe deterioration in channel identi�ca-
tion performance.
In this paper, we proposed an e�cient blind identi�ca-

tion algorithm for multichannel FIR systems. The approach
was based on the deterministic modeling of the channel in-
put. It was able to decouple the multichannel identi�cation
process and estimate individual channel separately. The
channel responses were estimated by solving a set of linear
prediction equations. The algorithm was computationally
more e�cient than the LS approach and practical for real-
time applications. When the channel orders are unknown,
we showed that the backward linear prediction can be com-
bined to detect the channel orders and improve the channel
response estimation performance. The identi�cation perfor-
mance can be further enhanced by exploiting the underlying
structure of the data matrices of the linear prediction. Fi-
nally, computer simulations were used to demonstrate the
e�ectiveness of the proposed algorithm. The results were
compared to those of the LS approach.

2. PROBLEM FORMULATION

Consider an array of M sensors receiving data from a com-
mon source. Each channel is assumed to be a FIR system.
The mth sensor output, xm(t), can be written as

xm(t) =

LmX
i=0

hm(t)s(t� i) = hm(t)� s(t); (1)

where � denotes the convolution operator, s(t) is the com-
mon source which is assumed to be unknown deterministic,
and hm is the FIR impulse response of the mth channel of
order Lm. We assume that the number of sensor outputs is
N . The objective of blind channel identi�cation is to esti-
mate the each channel responses fhm(t)g given the sensor
outputs fxm(t)g.

3. ESTIMATION OF CHANNEL RESPONSES

Let Hm(z) denote the z transform of hm(t). To ensure the
unique identi�cation of the channel responses, we assume
that fHm(z); m = 1; 2; : : : ;Mg are coprime, i.e., they do
not share any common roles [7]. In the z plane, we have



Xm(z) = Hm(z)S(z); (2)

where Xm(z) and S(z) are the z transforms of xm(t) and
s(t), respectively. For a pair of sensor outputs, xm(t) and
xn(t), their z transforms are related by

Hm(z) =
Xm(z)

Xn(z)
Hn(z): (3)

Since hm(t) is of �nite length of Lm + 1, Hm(z) is a
polynomial of order Lm. It is known that a polynomial of
order Lm can be accurately interpolated by N � Lm + 1
points on the unit circle on the z plane [8]. To interpo-
late Hm(z), we can choose the uniformly distributed points
zl =W l

N ; l = 0; 1; : : : ; N � 1, where WN = exp j2�=(N � 1)
as the interpolation points. The choice of uniformly dis-
tributed interpolation points has some useful properties.
First, this choice gives equal emphasis to the entire fre-
quency range of hm(t) which is appropriate especially when
we do not have any a prior information on the channel
spectra. Second, using uniformly distributed points will
lead to the minimum norm interpolation of Hm(z) [9]. The
minimum norm property implies that if the error in the
information of Hm(z) on the unit circle is uniform, the in-
terpolated error has minimum norm on the unit disk [10].
It follows that the error of the time sequence corresponding
to the interpolated Hm(z) is also minimum norm. From
the computational point of view, since the uniformly dis-
tributed points on the unit circle are in the form of the
discrete Fourier transform (DFT), the time sequence asso-
ciated with the interpolated polynomial can be computed
using fast Fourier transform (FFT) algorithms directly. The
inverse DFT of fHm(zl); l = 0; 1; : : : ; N � 1g is given by�

h0m(t) = hm(t) for t = 0; 1; : : : ; Lm
h0m(t) = 0 for t > Lm

(4)

When N points are used to recover hm(t), by the inverse
DFT formula, we have

h0m(t) =

LnX
i=0

"
1

N

N�1X
l=0

Xm(W
l
N )

Xn(W l
N)

W
(t�i)l
N

#
hn(i): (5)

De�ne Ymn(k) = Xm(W
k
N)=Xn(W

k
N) and let fymn(t); t =

0; 1; : : : ; N � 1g be the inverse DFT of fYmn(k); k =
0; 1; : : : ; N �1g. We use L to denote the maximum channel
order. Since h0m(t) = 0 for t > Lm, then

~Amn
~hn = 0; (6)

where ~hn = [hn(0); hn(1); : : : ; hn(Ln)]
T and

~Amn =

2
664

ymn(L+ 1) : : : ymn(L� Ln + 1)
ymn(L+ 2) : : : ymn(L� Ln + 2)
...

...
...

ymn(N � 1) : : : ymn(N � Ln � 1):

3
775 (7)

When the sensor outputs are noise-free, ~hn is in the null

space of ~Amn which can be determined up to a scaling fac-

tor. In practice, since the sensor outputs are usually cor-
rupted with noise, ~hn can be solved in the least squares
sense by

min
~h
n

k ~Amn
~hn k

2
F ; (8)

where ~hn is subject to certain nontrivial constraint. We
usually choose to constrain that hn(0) = 1. For an array of

M sensors, the criterion for solving ~hn becomes

min
~h
n

k ~An
~hn k

2
F ; (9)

subject to hn(0) = 1, where

~An = [ ~AT
1n; ~A

T
2n; : : : ; ~A

T
n�1;n; ~A

T
n+1;n; : : : ; ~A

T
Mn]

T : (10)

Note that the estimation of channel responses has been de-
coupled and each channel responses can be estimated sepa-
rately.

4. ALGORITHM IMPLEMENTATION

When hn(0) = 1, the constraint optimization problem (8)
can be written as the least squares solution of the following
linear equations

Amnhn = bmn; (11)

where hn = [hn(1); : : : ; hn(Ln)]
T , bmn = �A[:; 1] is formed

by the �rst column of Amn, and

Amn =

2
664

ymn(L) : : : ymn(L� Ln + 1)
ymn(L) : : : ymn(L� Ln + 2)
...

...
...

ymn(N � 2) : : : ymn(N � Ln � 1):

3
775 : (12)

Correspondingly, criterion (9) can be written as

Anhn = bn; (13)

where An = [AT
1n; : : : ; A

T
n�1;n; A

T
n+1;n; : : : ; A

T
Mn]

T and

bn = [bT1n; : : : ; b
T

n�1;n; b
T

n+1;n; : : : ; b
T

Mn]
T : (14)

It can be observed that that fhn(t)g forms a linear pre-
diction relationship among fymn(t)g. Equations (13) are
known as the normal equation in least squares terminology.
Many existing linear prediction techniques [11] can be ap-
plied for solving for the solutions of (13). There are also
the adaptive algorithms such as the multichannel recursive
least squares (RLS) approach [12]. These adaptive algo-
rithms have the ability to make the identi�cation adapt to
the time-varying channel environments. The proposed ap-
proach can be summarized as follows.

1. Compute the FFT of the sensor outputs fxm(t); m =
1; 2; : : : ;Mg.

2. Use the inverse FFT to compute fymn(t)g and form
the data matrix An.

3. Solve the linear prediction problem (9) for each chan-
nel.
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Figure 1. Variation of the RMSE of the �rst channel

response estimates via the SNR.

In practice, the channel orders are usually unknown and
need to be detected. There are di�erent approaches for de-
tecting the channel orders. One of the commonly used ap-
proach is the Akaike information criterion (AIC) [13] which
determines the order by minimizing an information crite-
rion. A more elaborate approach is to use an overestimated
channel order and combine the backward linear prediction
[14]. When overestimated channel orders, it can be shown
that the data matrices in (13) has a rank that is equal to
the channel order. It follows that channel order can be de-
tected as the number of the principal eigenvalues. In [14], a
minimum norm solution was proposed which only included
the eigenvectors associated with the principal eigenvalues.
Those eigenvectors associated with the small eigenvalues are
ignored in the solution because they could introduce consid-
erable 
uctuations of along their directions, ampli�ed by the
reciprocal of small noise eigenvalues, eventually resulting in
degraded estimation performance. The channel zeros can
be identi�ed by incorporating the backward linear predic-
tion technique. It is known that spurious zeros occur when
an overestimated channel order is used. However, since the
spurious zeros are generated by the prediction errors, they
usually do not change when the process is time reversed and
tend predominantly to stay within the unit circle. Thus, by
examining the zeros estimated from the both the forward
and backward prediction processes, we choose those zeros
which occur in reciprocal positions along a common radius
as the FIR channel zeros and discard the remaining ones as
spurious ones.

Since the proposed approach deals with each channel sep-
arately, it would be computationally more e�ciently than
those method based on solving the augmented channel re-
sponses. To discuss the computational complexity prob-
lem, we assume that each channel has a known order of
L. When direct methods (Gauss reduction or elimination)
are used, the computational complexity of the LS approach
is M3 � O(L3) while the proposed algorithm only requires
M � O(L3) operations. If we use the Levinson's recursive
method [15], the total computational complexity can be fur-
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Figure 2. Variation of the RMSE of the second

channel response estimates via the SNR.

ther reduced to M � O(L2). It should be pointed out that,
although the algorithm requires additional computations in
forming the data matrix An, they only involve fast Fourier
transform algorithms and will not introduce any signi�cant
computation cost.

5. NUMERICAL EXAMPLES

Two sensors were considered. Each channel channel re-
sponses were characterized by hm(t) = expf��mtg; t =
0; 1; : : : ; LM , where we chose �1 = 0:25, �2 = 0:1, L1 = 8
and L2 = 12. The sensor noises were simulated as indepen-
dent white Gaussian processes with zero mean.
First, we considered the case in which the channel orders

were assumed to be known. Figures 1 and 2 showed varia-
tions of the root mean squares error (RMSE) of the channel
response estimates via the sensor SNR for the two channels.
The comparisons were made with the LS approach. The
number of sensor samples was chosen as N = 200. Each
test is repeated 100 times to obtain the averaged results.
We can see that the proposed method outperformed the LS
approach in the sense that it produced smaller RMSE that
that by the LS approach at each SNR.
In the next example, we assumed that the channel or-

ders were unknown and the forward and backward linear
prediction techniques were used. We chose N = 200 and
SNR = 40dB. An overestimated channel order LE = 14
was used. Using the eigendecomposition of the data ma-
trices, we determined each channel order as L1 = 8 and
L2 = 12, respectively. The minimum norm solution of both
the forward and backward linear predictions were obtained
using the principal eigenvectors. Figure 3 showed the dis-
tribution of the estimated zeros of each channel. In Figure
3(a) and (c), we plotted the estimated zeros of the two
channels by forward and backward prediction. In the �g-
ure, labels 'x' and 'o' denote the estimated zeros by forward
and backward prediction, respectively. Figure 3(b) and (d)
showed the actual zeros of the two channels. We identi�ed
those zeros which occur in reciprocal positions along a com-
mon radius as the channel zeros. The estimated channel
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Figure 3. Distributions of the estimated zeros by

the forward and backward linear predictions.
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Figure 4. Estimation of the channel responses.

zeros were used to reconstruct the channel response esti-
mates. Figure 4(a) and (b) showed the channel response
estimates where we applied the proposed approach directly
with the overestimated channel orders. Figure 4(c) and (d)
were the estimation results by the forward and backward
predictions. In Figure 4, the solid lines denote the actual
channel responses, and the lines labeled with 'x' are the esti-
mated ones. As can be seen, an improved performance was
achieved by the application of the forward and backward
linear predictions. It is interesting to note that even when
an overestimated channel order is used, the performance of
the direct solution is not a�ected seriously. This partially
indicates that the proposed prediction approach is robust
to the overdetermination of the channel orders.

6. CONCLUSIONS

In this paper, we have presented a blind identi�cation ap-
proach for multichannel FIR systems. We showed that the
proposed approach was able to decouple the estimation of

channel responses successfully. The algorithm was imple-
mented using linear prediction techniques. It was compu-
tationally more e�cient than most existing methods based
on solving for the augmented channel responses. The ap-
proach overcame the di�culties in detecting the channel or-
ders and was practical for real-time applications. Computer
simulations demonstrated the e�ectiveness of the proposed
approach. Further statistical performance study and the
robustness analysis are under investigation.
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