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ABSTRACT

Adaptive blind equalization has gained widespread use in commu-
nication systems that operate without training signals. In particu-
lar, the Constant Modulus Algorithm (CMA) has become a favorite
of practitioners due to its LMS-like complexity and desirable ro-
bustness properties. The desire for further reduction in compu-
tational complexity has motivated signed-error versions of CMA,
which have been found to lack the robustness properties of CMA.
This paper presents a simple modification of signed error CMA,
based on the judicious use of dither, that results in an algorithm
with robustness properties closely resembling those of CMA. An
approximation to the steady-state mean-squared error performance
of the new algorithm is derived for comparison to that of CMA.

1. INTRODUCTION

The Constant Modulus Algorithm (CMA) [1, 2] has gained wide-
spread practical use as a blind adaptive equalization algorithm for
digital communications systems operating over inter-symbol in-
terference channels. Under perfect blind equalizability conditions
(A1)-(A5) listed in x2.2, CMA has been shown to converge in
mean to an equalizer setting capable of perfect symbol recovery.

Though assumptions of ideality are convenient for the theo-
retical analysis of blind equalization schemes, they are uncondi-
tionally violated in physical implementations of communication
systems. This fact suggests that therobustnessof a given blind
equalization strategy to violations in perfect conditions may sig-
nificantly impact its practical worth. In this spirit, it has been rea-
soned that the widespread practical use of CMA bears testament
to its superior robustness properties. A sizeable body of theoret-
ical analysis exists to support this claim (see [3] and references
therein).

Though noted for its LMS-like complexity, CMA may be fur-
ther simplified by transforming the bulk of its update multiplica-
tions into sign operations [2]. A recent study suggests that straight-
forward implementations of signed-error CMA (SE-CMA) do not
inherit the desirable robustness properties of CMA [4]. Inx3 we
present a simple modification of SE-CMA, based on the judicious
use of dither, that results in an algorithm with robustness prop-
erties closely resembling the standard (unsigned) CMA. The an-
ticipated consequence of dithering is a degradation in steady-state
mean-square error (MSE) performance. Inx4 we derive an ap-
proximation to the excess MSE of dithered SE-CMA which allows
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comparison to a similar expression derived for CMA. Implications
on convergence rate comparisons are then discussed inx5.

2. FRACTIONALLY-SPACED CMA

2.1. The Fractionally-Spaced System Model

In this paper we consider a noiseless communication system oper-
ating at baud intervalT . The baseband channel is approximated as
linear and FIR, and itsT=2-spaced impulse response coefficients
are collected into the length-Nh vectorh. The baseband receiver
model is reduced to aT=2-spaced linear equalizer described by
theNf coefficients inf . Figure 1 shows the block diagram re-
lating transmitted symbolssn (indexed byn) to the baud-spaced
system outputsyn.

Defining the fractionally-spaced (FS) convolution matrixH =0
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allows us to describe the baud-spaced system (mappingsn ! yn)
by its length-Nq impulse response vectorq = Hf . I.e., yn =
qts(n) for s(n) = (sn; sn�1; : : : ; sn�Nq+1)

t. The structure of
H implies thatNq = b(Nh + Nf � 1)=2c. We defineperfect
symbol recovery(PSR) to meanyn = sn�� for some fixed system
delay0 � � � Nq � 1. In such a case,q = e� wheree� denotes
a vector with 1 in the�th position and zeros elsewhere.

sn yn22 h f

Figure 1:T=2-spaced baseband communication system model.

2.2. The Constant Modulus Algorithm

The constant modulus (CM) criterion can be expressed by the cost
functionJcm = 1
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where is a positive constant
known as theGodard radius[1]. The equalizer update algorithm
leading to a stochastic gradient descent ofJcm is known as the
Constant Modulus Algorithm (CMA) and is specified by [2]

f(n+ 1) = f(n) + �r�(n) yn
�
 � jynj
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where� is a step-size andr(n) is the equalizer input vector at
time indexn. The asterisk denotes conjugation. The function (�)
identified in (1) is referred to as theCMA error function.

The following perfect blind equalizability(PBE) conditions
are known (e.g. [3]) to be sufficient to guarantee that equalizers
minimizingJcm achieve perfect symbol recovery.

(A1) Sufficient equalizer length: For aT=2-spaced FSE,Nf �
2dNh=2e � 2.

(A2) Subchannel disparity: The polynomials formed from the
even and odd coefficients ofhmust share no common roots.

(A3) No additive channel noise.

(A4) Sub-Gaussian source: The source kurtosis�s =
Efjsnj

4g

Efjsnj2g2

must be less than that of a Gaussian process.

(A5) White source: The source symbols must be temporally un-
correlated (and when complex-valued,Efs2ng = 0).

Note that(A4)-(A5) pertain to blind equalization via the CM cri-
terion, while(A1)-(A3) are required1 to guarantee perfect symbol
recovery for a given channel-equalizer combination.

3. COMPUTATIONALLY EFFICIENT CMA

Straightforward implementations of LMS-like adaptive algorithms
(such as CMA) require a multiply the between the error function
and every regressor element (see (1)). Many practical applications
benefit from eliminating theseNf regressor multiplies.Signed-
error (SE) algorithms present one method for doing so, whereby
only the sign of the error function is retained [5]. When a SE algo-
rithm is combined with a power-of-two step-size, it is possible to
construct multiply-free fixed-point implementations of the equal-
izer update algorithm. The sections below discuss two versions of
SE-CMA. For the remainder of the paper, we restrict our focus to
the case where all quantities are real-valued.

3.1. Signed-Error CMA

The real-valued SE-CMA algorithm is specified by [2]

f(n+ 1) = f(n) + �r(n) sgn
�
yn
�
 � y2n
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wheresgn(�) is the standard (real-valued) signum function. Fig-
ure 2 compares signed and unsigned versions of the CMA error
function:� and , respectively.

A recent investigation into SE-CMA has shown that, while
satisfaction of the PBE conditions and correct selection of en-
sures convergence to a PSR setting, violation of(A1) severely hin-
ders SE-CMA convergence behavior [4]. Specifically, there exist
vast yet highly suboptimal regions in equalizer space for which
the average update in (2) is zero. Thus, while computationally effi-
cient, SE-CMA does not inherit the desirable robustness properties
of CMA. This motivates the search for computationally efficient
blind algorithms whichdo inherit these robustness properties. The
following section describes one such algorithm.

1We acknowledge the existence of peculiar violations of(A1)-(A2) al-
lowing the possibility of perfect symbol recovery for a restricted range of
� [3], but dismiss them on account of their academic nature.
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Figure 2: CMA, SE-CMA, and DSE-CMA error functions.

3.2. Dithered Signed-Error CMA

In this section we describe a simple modification to SE-CMA that
results in an algorithm whose average behavior closely matches
that of (unsigned) CMA.

The one-bit quantization inherent to signed-error adaptation
algorithms motivates the application of dither [7]. Dithering tech-
niques attempt to preserve information lost in the quantization pro-
cess by making the quantization noise white, zero-mean, and inde-
pendent of the signal being quantized. Intuitively, a small step-size
adaptive algorithm can then “average out” the quantization noise,
yielding mean behavior nearly identical to the unsigned algorithm.
See [6] for an example of adding controlled noise to SE-LMS for
echo cancellation.

We define real-valueddithered SE-CMA(DSE-CMA) as:

f(n+ 1) = f(n) + � r(n)� sgn
�
 (n) + �dn

�
| {z }
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(3)

wheredn are samples of the dither process,� is a real positive
constant, and (n) is the CMA error function defined in (1).

For this application,fdng is required to be an i.i.d. random
process whose characteristic function has zeros at all multiples of
� except the origin [7]. In other wordsEfej�ldng = 0 8l 6= 0:
With these properties, the theorems in [7] imply that the expected
DSE-CMA error function is a “hard-limited” version of the CMA
error function:

'�(yn)
4
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 (yn) yn : j (yn)j � �;

�� yn :  (yn) < ��:

See Figure 2 for a plot of'�(�) for various values of�. Note
that� � 2(=3)3=2 prevents the two “humps” of the CMA error
function from being clipped. Thus, when� = 2(=3)3=2, we
expect the average update behavior of DSE-CMA to be identical
to that of CMA for all equalizers satisfying the output constraint
jynj � 2

p
=3, since

�� (yn)�� � � for theseyn.
The relationship between the DSE-CMA and CMA error func-

tions for any particular� � 2(=3)3=2 implies that the respective
cost functions have identical shape within the convex polytope of
equalizers satisfying a particular output amplitude constraint (see
Fig. 3). This constraint was stated earlier for� = 2(=3)3=2; for
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Figure 3: Trajectories of DSE-CMA (rough) overlaid on
those of CMA (smooth) for BPSK, noiseless channelh =
(0:1; 0:3; 1;�0:1; 0:5; 0:2)t, � = 5 � 10�4, � = 1, and uni-
form fdng. Solid lines areJcm contours, and dashed lines bound
the convex output-amplitude-constraint polytope within which the
CMA and DSE-CMA cost functions are identically shaped.

arbitrary� > 2(=3)3=2, the bound onjynj is given by the the
largest root of the polynomialy( � y2)� �.

Figure 3 shows two examples of DSE-CMA trajectories over-
laid on CMA trajectories initialized at the same locations. Note
that the DSE-CMA trajectories exhibit much more parameter vari-
ation than the CMA trajectories. The effect of this parameter vari-
ation on steady-state performance is quantified inx4.3.

It is worth mentioning that, of all dither processes, a uniform
distribution on(�1; 1] leads to the lowest quantization noise power
[7] and hence the lowest parameter variance.

3.3. Selection of the Godard Radius: The General Case

This section outlines a procedure which can be used to choose the
Godard radius given an arbitrary error function such as'�. We
follow the method of Godard in [1], whereby is selected to force
the mean equalizer update to zero when perfect equalization has
been achieved. Taking DSE-CMA as our example, the mean up-
date term is�r(n)'�(yn) from (3). Fromx2.1, we know that
r(n) = Hts(n) and that, at perfect symbol recovery,yn = sn��.
Assuming an i.i.d. source process,'�(sn��) is independent of all
but one element ins(n), namelysn��. Hence, for a zero update,
we only require that the value of in '� be chosen so that

E
�
'�(sn)sn

	
= 0 (4)

For the CMA algorithm of (1), it is well know that this proce-
dure yields = Efs4g=Efs2g. In [4], the authors give an expres-
sion for in the case ofM -PAM (real-valued) SE-CMA. Closed
form expressions for in the case ofM -PAM DSE-CMA with ar-
bitrary� are difficult if not impossible to derive. Fortunately, for
finite-alphabet sources, satisfying (4) can easily be determined
numerically.

4. STEADY-STATE BEHAVIOR OF DSE-CMA

As noticed earlier, the principle disadvantage of DSE-CMA con-
cerns its steady-state behavior: the addition of dither leads to an

increase inexcess mean-squared error(EMSE). We define EMSE
as the steady-state MSE above that achieved by the (locally) op-
timal fixed parameter setting. In the ensuing analysis we assume
that the PBE conditions are satisfied, in which case the minimum
achievable MSE is zero.

The subsections below attempt to quantify the excess MSE of
DSE-CMA when the PBE conditions are satisfied. The approach
taken is the following: in the vicinity of a minima, the CMA cost
function is well approximated by a quadratic error surface, imply-
ing that the steady-state behavior of CMA can be linked to the
steady-state behavior of LMS. Existing results on the asymptotic
parameter distribution of fixed step-size SE-LMS are then applied
to describe the steady-state parameter distribution of DSE-CMA,
from which an approximation of the EMSE is derived. Specifi-
cally, these results imply that the DSE-CMA parameters asymp-
totically approach i.i.d. Gaussian random variables [8].

4.1. Local Approximation of CM Cost

Assume, w.l.o.g., a unit variance source:Efs2g = 1. Then the
CM cost in terms of the system parametersq is [3]

Jcm(q) =
�s�3

4

Nq�1X
i=0

q4i +
3

4
kqk42 �

�s
2
kqk22 +

�2s
4

(5)

wherekappas was defined in(A4). The second-order Taylor se-
ries expansion ofJcm about the minimumq = e� can be ob-
tained by straightforward vector calculus. (Details will be pro-
vided by the author apon request.) Defining the optimal equalizer
f� = H�1e� and the parameter error~f = f� f�, Taylor’s theorem
suggests thatJcm is well approximated by~Jcm(~f ) =

�s(�s�1)

4
+

3��s
2

~f tHt
H~f +

3(�s�1)

2
~f tHt

e�e
t
�H~f (6)

for small~f .
The last term in (6) is a quadratic form involving the non-

Toeplitz matrixHte�e
t
�H. As we desire~Jcm of the form ~Jcm(~f)

= Jmin + ~f tRx;x
~f , whereJmin is a constant andRx;x is the auto-

correlation matrix of some stationary ergodic equalizer input pro-
cessfxg, we will further approximate (6).

Using the following facts: tr(A) = A for any scalar A,
tr(~f tA~f) = tr(~f~f tA) andE

�
tr(A)

	
= tr

�
EfAg

�
for any ma-

trix A, andE
�
~f~f t
	
= CINf for some scalar C [8], we claim
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= C tr(et�HH

t
e�)
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where the approximation is based on the structure ofH from x2.1.
Since, by the same techniques,E

�
~f tHtH~f

	
= C tr(HHt) =

CNf
2

khk22, we can approximate~Jcm by

Ĵcm =
�s(�s�1)

4
+

1

2

�
3��s + 3(�s�1)=Nf

�
~f tHt

H~f (7)

4.2. Asymptotic Parameter Distribution

Linking the locally approximated CM cost to an LMS update will
allow us to use existing results on the steady-state parameter dis-
tribution of SE-LMS to approximate that of DSE-CMA.



Applying LMS to the equalization problem of Fig. 1 yields

~f(n+ 1) = ~f(n) + �r(n)
�
en + un

�
(8)

whereen = sn�� � yn is an error signal driven to zero when
~f = 0, andun is a non-vanishing “noise” process [5]. The LMS
algorithm is known to stochastically minimize

Jlms = Jmin +
1

2
~f tRr;r

~f = Jmin +
1

2
~f tHt

H~f

ComparingJlms to Ĵcm, we conclude that CMA is well approxi-
mated by the LMS-like recurrence

~f(n+ 1) = ~f(n) + �r(n)
�
Ken + un

�
(9)

for small~f , where the gain

K = 3��s + 3(�s�1)=Nf (10)

accounts for a slope calibration betweenJlms andĴcm, and where
un accounts for the minimum achievable CM costJmin = �s(�s�

1)=4. Comparing (1) withyn = sn�� to (9) with ~f = 0, it is
evident thatfung must take on the valuesf (sn)g normalized so
that�2u = �s(�s � 1)=4. In short,un represents the noisy effect
that a non-CM source has on the CMA update (see [9, 3]).

Extending (9) to its dithered signed-error version (and dividing
the argument of thesgn(�) operation by the positive constantK)
gives a local approximation to DSE-CMA for small~f :

~f(n + 1) = ~f(n) + ��r(n) sgn
�
en + (un+�dn)=K

�
(11)

Adaptation algorithms of the form (11) have been shown (un-
der certain conditions) to have parameter distributions which are
asymptotically Gaussian with covariance matrix [8]

��

4Kpu+�d(0)
INf (12)

wherepu+�d(0) is the probability density function of the random
processfun + �dng evaluated at the point 0.

One important condition on (12) is thatpu+�d must be smooth
and bounded withpu+�d(0) > 0 [8]. This condition imposes a
fung-dependent lower bound on� for which (12) remains valid
and prevents this analysis from directly applying to (non-dithered)
SE-CMA, sincep (s)(0) = 0 for a finite-alphabet source.

Another condition on (12) is thatfung must be statistically
independent ofr(n). This is certainly not true forun =  (sn��)
sincer(n) = Hts(n). Thus, we restrict our calculation of EMSE
in x4.3 to a constant modulus source (i.e. BPSK), so thatun = 0.

4.3. Excess MSE (Under PBE Conditions)

Given the steady-state parameter covariance matrix (12), it is pos-
sible to calculate the mean-squared errorJmse= E

�
(yn�sn��)
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. It was shown inx4.1 that, whenE
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= CI,

E
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=

CNf
2

khk22. Restricting focus to BPSK, equations
(10) and (12) with�s = 1 specifyC, thus giving

Jmse � ��Nfkhk
2
2=16p�d(0) (13)

When fdng is uniformly distributed on(�1; 1], we know that
p�d(0) = pd(0)=� = 2=�, and so (13) becomes

Jmse � ��2Nfkhk
2
2=8 (14)

Table 1: Approximate scale factor to apply to (14) forM -PAM.

M 2 4 8 16 32
factor 1 1.3 1.7 3.4 3.5

As discussed inx3.2, higher values of� enlarge the convex
polytope within which the shape of CMA and DSE-CMA cost
functions is identical (see Fig. 3). As evident from (14), however,
� has a squared effect on EMSE. Hence, the selection of� is a
design tradeoff between CMA-like robustness and EMSE.

Given that there exists a formula for the EMSE of CMA [9]:

Jmse =
�Nfkhk

2
2

4(3� �s)

�
Efs6ng

Efs2ng3
� �2s

�
Efs2ng

2 (15)

it is unfortunate that our preliminary results on DSE-CMA only
pertain to BPSK. (A general expression forM -PAM case is be-
ing derived.) SPIB-based (http://spib.rice.edu/ ) micro-
wave channel simulations seem to indicate, however, that non-CM
sources scale the EMSE of (14) proportionally. Table 1 estimates
this scale factor for variousM -PAM constellations when� = 1.

5. CONCLUSIONS

With hardware cost in mind, CMA implementations often update
the equalizer coefficients only once perNf equalizer input sam-
ples, allowing one multiplier to time-share theNf regressor multi-
plies. Assuming this scheme decreases convergence rate by a fac-
tor ofNf , the results ofx4.3 indicate that DSE-CMA constitutes a
worthwhile improvement over “one-multiplier CMA” for reason-
able equalizer lengthsNf . A more detailed study will follow.
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