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ABSTRACT

A text-to-speech synthesis technique, based on warped linear pre-
diction (WLP) and neural networks, is presented for high-quality
individual sounding synthetic speech. Warped linear prediction
is used as a speech production model with wide audio bandwidth
yet with highly compressed control parameter data. An excita-
tion codebook, inverse filtered from a target speaker’s voice, is
applied to obtain individual tone quality. A set of neural networks,
specialized to yield synthesis control parameters from phonemic
input in specific contexts, generate the detailed parametric con-
trols of WLP. Neural nets are also used successfully to compute
the prosodic parameters. We have applied this approach in pro-
totyping highly improved text-to-speech synthesis for the Finnish
language.

1. INTRODUCTION AND MOTIVATION

After a long period of successful developments in text-to-speech
(TTS) synthesis, voice quality still remains a challenge. No prac-
tical technique yields wide audio bandwidth, near human quality,
and individual sounding speech.

Our effort in this study was to find a strategy to improve TTS
synthesis for the Finnish language. Earlier achievements were
first based on traditional formant synthesis with rule-based con-
trol, SYNTE 2 and 3 [1], and then concatenation synthesis called
microphonemic synthesis [2] similar to the PSOLA technique [3].
Concatenative synthesis, based on samples from human speech,
easily captures the features from individual speakers. In order to
approach full naturalness, however, a huge inventory of samples in
different contexts is needed. The algorithms to select concatenat-
ive units and to join them in synthesis tend to become complex.

Source-filter models for speech synthesis, such as those used
in linear prediction, have more flexibility and allow for easy ana-
lysis of control data. The problem remains how to code the excit-
ation (source) and the filter control parameters in a compact way
and be able to recompute them from phonemic/phonetic informa-
tion. Hand-tuned rules and tables, as used in early synthesis, can-
not produce highest quality speech. Tables of parameter traject-
ories have similar problems as concatenative synthesis: the size
of such inventories grows beyond practical limits when contextual
details are included. Among the techniques that are used to com-
press and generalize control parameter information through learn-
ing are, e.g., neural networks, hidden Markov models, and fuzzy
or neuro-fuzzy rule systems.

The requirements dictating the choice of methods in our study
were to obtain very high quality individual sounding synthesis,

wide audio bandwidth (> 10 kHz), easy automation of tuning the
synthesis to individual speakers using a speech database, moder-
ate memory and processor requirements in implementation, easy
integration of audio and visual synthesis (talking head), and prefer-
ably as much language independence as possible.

We first discarded the waveform concatenation methods due to
the complexity of sample collection and even more due to the dif-
ficulty of controlling the detailed contextual effects. An LPC-like
source-filter model was found to be more attractive. The success
of this approach depends on several factors. A relatively small in-
ventory of source excitations for the synthesis of all phones in the
target language should be easily aquirable. The filter parameters
should be represented compactly in a form that is suitable to auto-
matic training, e.g., using neural nets.

The problem of ordinary linear prediction with wide band-
widths is that a high filter order is required and the high-frequency
portion reserves too much resolution. For example, with a sampling
rate of 22 kHz, the traditional rule of thumb leads to an LP filter
order of about 24 and most of the filter parameters focus on fre-
quencies above the important formant range below 3.4 kHz [4].
This problem was elegantly solved in our case by adopting warped
linear prediction (WLP) [5], utilizingnon-uniform frequency res-
olution and allowing moderate filter orders of 10 – 14 almost inde-
pendently of the sampling rate.

The compactnessof synthesis parameter information helped in
modeling the generation of these parameters from phonemic input
data. Neural networks have been shown to perform this mapping
but not without problems. Possible candidates of neural nets are
multilayer feedforward nets withphoneme string and synthesis po-
sition input, time delay neural networks (TDNN) with time frame
input, and recurrent networks, see [6] and references in it. Our
experience with neural nets has shown that for detailed modeling,
specialization of nets is useful so that each individual net is applied
only in a specific context.

In this paper the main features of our approach are described.
We have studied the level of voice quality achievable using WLP
and specialized neural nets. A full scale synthesizer is under devel-
opment but already the experiments indicate that a very natural and
individual sounding TTS synthesis, practical for implementation,
can be obtained.

2. WARPED LINEAR PREDICTION

The first systematic formulation of warped linear prediction was
presented by Strube [7]. Later, Laine et al. [5] have studied vari-
ous formulations of efficient WLP. The idea of a warped frequency
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Figure 1: A realizable WIIR structure with first-order allpass
delays and a single unit delay.

scale and related resolution is based on using allpass sections in-
stead of unit delays in DSP structures, i.e.,

~z�1 = D1(z) =
z�1 � �

1� �z�1
(1)

where�, �1 < � < 1, is a warping parameter andD1(z) is a
warped (dispersive) delay element. With a proper value of�, the
warped frequency scale shows a good match to the psychoacous-
tically defined Bark scale [8], thus optimizing the frequency resol-
ution from the point of view of auditory perception. For example,
with a sampling rate of 22 kHz, Bark warping is obtained using�

= 0.63.
WLP analysis is easily realized by modifying only the auto-

correlation computation using a version where unit delays are re-
placed by allpass sections. The same holds for inverse filtering to
obtain the residual (excitation) signal. The synthesis filter, how-
ever, cannot be realized in such a simple manner since in recursive
structures the replacement of Eq. (1) results in delay-free loops.
Techniques to avoid this problem are discussed, e.g., in [9]. The
filter structure shown in Fig. 1 has been used in our WLP synthesis
experiments. The original (warped) denominator coefficients are
mapped to new coefficients�i that are used as feedback coeffi-
cients. Otherwise, the WLP analysis and synthesis techniques are
the same as with ordinary linear prediction.

The advantage gained when using Bark warping is that in wide-
band synthesis the filter order can be reduced remarkably without
sacrificing the frequency resolution at low frequencies. At high
frequencies the spectral resolution is worse, nevertheless this is
exactly how hearing functions. We have experimentally evaluated
the voice quality of WLP and normal LP for various filter orders
when the sampling rate is 22 kHz. Ordinary LP yields good quality
with orders of 20–24 while WLP works comparably with orders of
10–14. Figure 2 shows synthesis filter responses for a vowel spec-
trum (Finnish /a/) using ordinary LP and WLP.

The main advantage of WLP over LP is the compression of
control parameter data which helps in the training of neural nets to
generate these parameters. A lower filter order is also advantage-
ous for fast computation but this is counteracted by the inherently
more complex structure of the warped IIR filters (Fig. 1). It is also
possible to expand the WIIR filter structure into an ordinary direct
form IIR filter but the WIIR structure is numerically more robust
as discussed in [9]. Since on modern processors (DSPs, Pentium,
PowerPC) such filters consume only a few per cent of CPU re-
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Figure 2:LP and WLP spectra of vowel /a/ for different filter or-
ders.

sources, the robust and straightforward WIIR structure of Fig. 1
has been used in our synthesizer.

As a final representation for WLP filter control parameters
we used WLP lattice coefficients (reflection coefficients). This
was due to the desirable characteristics of reflection coefficients
whereby the stability of the synthesis filter can be guaranteed by
limiting the coefficient values in the range(�1;+1). This well-
defined range of parameters also helps when generating them using
neural networks as will be described below. The warped reflection
coefficients were converted by the standard step-up procedure to
warped polynomial coefficients for controlling the filter structure
shown in Fig. 1.

3. SYSTEM CONFIGURATION

Figure 3 illustrates the block diagram of the synthesizer. The WLP
synthesis structure consists of an excitation codebook, an overlap-
add concatenator of excitation signals for pitch and duration gen-
eration, a gain multiplier, and a warped LP filter (WIIR synthesis
filter). This voice synthesis chain is controlled by sets of context-
specialized neural networks (netsets), for filter parameters, pitch,
duration, and gain controls. Neural network inputs as well as the
selection of a proper network within a netset is based on the phon-
eme to be synthesized, its phonemic context as well as other con-
textual information.

The input data in Fig. 3 is a string of phonemes. The preceding
grapheme-to-phoneme conversion, which is exceptionally simple
in the Finnish language, is not shown and discussed here. The
phoneme to be synthesized as well as the neighbouring phonemes
and other contextual information are used to compute numerically
coded context vectors for the neural network inputs. Each netset
in the diagram is a set of context-specialized feedforward neural
nets. Only one of the networks within a netset is activated at any
one time, depending on the unit to be synthesized and its context.

4. SPECIALIZED NEURAL NETS FOR FILTER
PARAMETER CONTROL

Our experience with feedforward neural nets has shown that, in-
stead of using a single large network, a complex input-output map-
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Figure 3: Configuration of the speech synthesis system using
warped linear prediction and specialized neural nets.

ping is more easily and precisely learnt by a set of specialized
networks, each one contributing only within a specific region of
a multidimensional input data space. The same strategy, the util-
ization of specialized detectors and generators, is also found in
biological and human neural systems.

In speech processing, this principle can be utilized in various
ways. Earlier we have shown that the performance of prosodic fea-
ture models is improved when the mapping from phoneme string
input to duration, pitch, or signal gain is properly partitioned [12].

4.1. Network Input/Output Coding

The input to the synthesizer consist of phonemic information (a
string of phonemes converted from a string of graphemes) as well
as phonetic information (e.g., factors affecting prosody indicated
by punctuation). This symbolic information must be converted
into numerical form to allow neural networks to be utilized in the
generation of synthesis control parameters. We have used three
types of information to constitute the input to the networks:

1. The phoneme to be synthesized is coded as three real numbers
representing the broad class (e.g., vowel), the fine class (e.g.,
/a/), and the quantity (e.g., short vs. long). Neighboring phon-
emes (e.g., three previous as well as three future phonemes) are
also coded in a similar way and thus the network is introduced
to the specific context in which the phoneme to be generated
exists. Therefore(3 + 1 + 3) � 3 = 21 elements of the in-
put vector are generated from the phonemic information in the
above mentioned way.

2. The relative position of thephoneme to be synthesized in the
word as well as the number of phonemes in the word are coded
as two real numbers. This improves performance since the net-
work then can infer stressed/unstressed syllables.

3. The relative point (time) within the phoneme to be synthesized
is coded as a number between 0.0 and 1.0. This allows for the
microstructure to be generated further improving the quality of
the synthesis.

These21 + 2 + 1 = 24 values are combined into one input
vector. Associated with each input vector is a target vector that
indicates the desired output values of a neural net, i.e., the WLP
lattice coefficients.

Figure 4:WLP spectra (dB vs. Bark scale) at a certain time instant
in an [e]–[i] transition of word /keinu/. The top curve is the target
spectrum and the other ones are neural net generated cases (Table
1) in order of decreasing specialization.

4.2. Network Specialization

Phoneme networks model the WLP coefficients at any temporal
point within a phoneme. However, when moving across phoneme
boundaries, switching in a new network may cause discontinuities
to occur in the coefficients. To achieve more smooth transitional
performance around these areas a set of diphone WLP synthesis
networks are taught and utilized in a manner similar to thephon-
eme nets. Amplitude mixing (cross-fading) the outputs of both
network types improves the quality of synthesis.

Table 1 shows the average absolute error of the lattice coeffi-
cients for a set of WLP diphone synthesis networks as a function of
the degree of specialization. As specialization decreases the error
increases. As an example of spectral error due to lattice coefficient
error, Fig. 4 displays the WLP spectrum slightly past the diph-
thong transition [e]–[i] in the Finnish word /keinu/. The topmost
curve represents the actual WLP spectrum at this point in the sig-
nal while the other curves (in order of decreasing specialization)
represent the synthesized spectra using the networks listed in Table
1. The [e]–[i] specific network produces the most accurate spectral
estimate (second topmost curve).

Table 1.Lattice coefficient error vs. network specialization
Specialization Diphone Type Coeff Error

specific /e/ – /i/ 5.0 %
. . . front vowel – front vowel 5.3 %
. . . vowel – vowel 6.1 %

general any – any 7.5 %

4.3. Speech Database and Network Training

The speech material used for training and evaluating the networks
consisted of approximately 2000 Finnish words spoken in isola-
tion by a single male speaker. This manually segmented and phon-
etically transcribed material was divided into training and evalu-
ation sets with a 2:1 ratio on a word basis. Each phone or diphone
segment in either the training or evaluation set provided for 13



temporally nonlinearly spaced training elements. The number of
elements in the training and evaluation sets for the most general di-
phone network exceeded 100,000 and 50,000, respectively. As the
degree of specialization increased the size of the sets decreased.

For each degree of specialization the number of hidden nodes
was systematically varied to determine the optimum network size
so as to match the network to the difficulty of the mapping prob-
lem. Three hidden nodes was found to minimize the error for the
most specialized network while the more general networks per-
formed better with a substantially larger number of nodes. For
example, the any-any diphone net displayed in Fig. 4 utilized 500
hidden nodes and this explains the relatively high level of spectral
detail produced by this network.

5. EXCITATION CODEBOOK

The excitation codebook is an indexed table of residual signals, ex-
tracted from the speech database signal entries for the individual
speaker to be modeled. In the most simple case a single excita-
tion pattern may be used for all voiced sounds. However, a more
natural voice quality is obtained ifeach phoneme has a different
entry in the codebook, each representing a typical case of this spe-
cific phoneme. If desired, the codebook can be made even more
specialized, e.g., by providing a separate entry for some critical
allophones.

The entries of the excitations are concatenated during syn-
thesis so that the desired pitch is generated according to the pitch
target produced by the corresponding netset. For unvoiced sounds,
white noise is used as an excitation signal.

6. PROSODY CONTROL

Prosody control is accomplished with three sets of networks for
segmental durations, fundamental frequency, and gain (loudness).
Their input is similar to the WLP networks’ input with some dif-
ference in the phonetic information. Pitch nets are coded onto the
semitone scale, loudness nets onto the phon scale, and the dura-
tion nets onto a logarithmic time scale. Again, specialization is
utilized.

Our prosody control results were as follows: duration estima-
tion was the most difficult task and specialization was needed for
the error to decrease below 20%, the difference limen. A 2.2 phon
error was achieved with loudness networks — one phon is gener-
ally considered just noticeable. An error of 3.5% was measured
for the pitch networks: this amounts to about 0.6 semitones at 100
Hz and is well below the 1.5 to 2 semitone threshold for speech
[10]. Prosody control is discussed in more detail in [11], [12], and
[13].

7. SUMMARY

An experimental framework for individual sounding TTS utilizing
WLP and specialized neural network sets for controlling spectral
and prosodic parameters has been presented. The system described
in this paper is in the development stage and so far has been trained
and evaluated on isolated words. Future work includes extending
the synthesizer to the sentence level as well as implementing a
real-time version.
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