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ABSTRACT
In this paper, we present a blindly adaptive beamforming
algorithm which is based on the second order interference es-
timation to maximize the received SINR. Using the desired
signature code and the orthogonal to it code, a new code
�lter is introduced to decompose the receiving signals into
two part : desired information and interference. The above
method motivates us to develop the QR-decomposition based
dominant eigen mode search (QRD-DMS) algorithm which is
more numerically stable than the DMS one. The correspond-
ing wavefront systolic architecture is also proposed for the
VLSI implementation. Compare to the families of minimum
mean square error (MMSE) algorithms which need training
sequences, we have completed the maximum SINR families,
as shown in Table 1, by proposing the QRD-DMS method
which not only blindly updates the beamforming weights and
converges as fast as the QRD-RLS method.

1. INTRODUCTION AND SYSTEM MODEL

In recent years, blindly adaptive beamforming techniques
have arised much attention in military or commercial appli-
cations. One approach uses the principle generalized eigen-
vector of the signal and interference matrix pair to maximize
the signal to interference and noise ratio (SINR) [1, 2, 3, 4].
The advantages of the above method is nonsensitive to ar-
ray geometry and has the fastest convergence speed among
the blindly adaptive algorithms. By the fact that the power
iterations [5] converges faster than the estimation of correla-
tion matrices, we have introduced the dominant eigen-mode
searching (DMS) method [6] to search the principle eigen
mode economically. To keep from amplifying the quantiza-
tion errors of the �nite-digit sampling in the data vectors mo-
tivates the study of updating the beamformer directly from
the data sequences. In this paper, we propose a novel QR-
decomposition DMS (QRD-DMS) algorithm which updates
the weights directly from the data sequences and o�ers a nu-
merically stable DMS beamformer. Similar to the QRD-RLS
systolic architecture, a wavefront QRD-DMS systolic array
is also introduced for high e�cient VLSI designs.

We consider the scenario of the uplink transmission in a
single cell. P array sensors receive the information from total
K users which are uniformly distributed in azimuth around
the base station. At the mobile transmitters, we assume the
source data is modulated by the balanced-DQPSK. The in-
phase (I) and quadrature (Q) signals are spread by the user's
long user code and short I-Q channel code. The channel is
assumed to be multipath propagation medium with total L
resolvable path groups. To decompose the received data into
the signal and the interference, we divide the post-correlation
data into two parts. The �rst part �(n) is obtained by in-
tegrating the post-correlated results from [0; Tb=2]; and the
second part �(n) is from [Tb=2; Tb].

Beamforming MMSE Max. SINR
Method (Training seq.) (Blindly adaptive)

Gradient based LMS Maxmin [7]
Deterministic RLS DMS [6]
QRD based QRD-RLS QRD-DMS�

Table 1: The beamforming algorithms of the MMSE and
Max. SINR families. � : being proposed in this paper.

�k;l(n) =

Z �k;l+(n�1=2)Tb

�k;l+(n�1)Tb

r(t) ? Ck(t� �k;l)dt;

�k;l(n) =

Z �k;l+nTb

�k;l+(n�1=2)Tb

r(t) ? Ck(t� �k;l)dt; (1)

where �k;l denotes the time delay of the desired signal; Ck(t)
denotes the signature code's waveform. The operator '?'
denotes the remultiplications of the signature code in the I
and Q channels. We notice that the original post-correlated
results have been modi�ed in our system. In the present
DS/CDMA system, like IS-95, the post-correlated signal yk;l
is obtained by integrating one symbol's long and equals to
the summation of the above two parts.

yk;l(n) = �k;l(n) + �k;l(n)

= G � sk(n)ak;l + uk;l(n): (2)

The interference uk;l(n) is uncorrelated with desired data
sk(n) if we assume mutually uncorrelated sources and ran-
dom signature code. ak;l denotes the P � 1 channel vector,
and G means the processing gain. We introduce another
post-correlated signal which is remultiplied by the orthogo-
nal code.

zk;l(n) = �k;l(n)� �k;l(n);

=

Z �k;l+nTb

�k;l+(n�1)Tb

r(t) ? Ck?(t� �k;l)dt; (3)

which null out the desired information. The orthogonal code
can be expressed as the element-wise multiplication of de-
sired code to a Hadamard-Walsh orthogonal sequence.

Ck?(t) = Ck(t) :� [

Tb=2z }| {
+++ : : :++;

Tb=2z }| {
��� : : :��]: (4)

Let us �rst assume that ~r(t) represents the received signal
r(t) without the desired information. So the interference
uk;l(n) can be viewed as the post-correlation results of ~r(t).

uk;l(n) =

Z �k;l+nTb

�k;l+(n�1)Tb

~r(t) ? Ck(t� �k;l)dt;

= ��k;l(n) + ��k;l(n): (5)



where f��k;l; ��k;lg represents the signal f�k;l; �k;lg without
the desired information. Since the orthogonal code Ck?(t)
�lters out the desired signal sk;l(t), zk;l(n) does not con-
tain the desired information anymore. Reader can check the
following equality

zk;l(n) = �k;l(n)� �k;l(n) = ��k;l(n)� ��k;l(n); (6)

which gives the following lemma:

Lemma 1 If the spreading code is an independent Bernoulli
process, the correlation matrix of the estimated interference
equals to which of the exact interference, i.e Ruu = Rzz.

Proof: The data ��k;l(n) and ��k;l(n) are uncorrelated be-
cause they are contributed by the independent spreading
code from the mutually disjoint �rst and second Tb=2 time
interval. From equations (5) and (6), we can �nd that Ruu

equals to Rzz by direct calculations. 2
In time varying environment, we can only assume pseudo

time invariant channels within a �nite sampling window, so
the estimation error E(n) = jRuu(n)�Rzz(n)j

2 always ex-
ists. However, the above lemma is valid for both synchronous
or asynchronous CDMA systems even if the correlator are
unperfectly synchronized to the desired signal.

2. THE QRD-DMS ALGORITHMS

Based on the above interference estimation, we will introduce
the algorithm which blindly maximize the averaged signal
to interference and noise ratio (SINR) at the output of the
beamformer. After the beamforming combination, the re-
sulting signals can be expressed as

ŝk(n) = w
H � yk;l(n)

= G � �w � sk(n) + uk;l(n): (7)

where the constant �w = wH � ak;l. The uk;l(n) is uncor-
related to the desired data sk(n) if we assume uncorrelated
sources. The resulting SINR can be expressed as the ra-
tio of the signal power E[j�wsk(n)j

2] to the noise power
E[juk;l(n)j

2]. From the above equation, we can compute the
SINR as

SINR =
EkwHyk;l(n)k

2

EkwHuk;l(n)k2
� 1 =

wHRyyw

wHRuuw
� 1: (8)

Since both correlation matrices Ryy and Ruu are positive
de�nited, for any weight vector w 6= 0, we have [8]

�max �
wHRyyw

wHRuuw
� �min (9)

where �max � �2 �; : : : ;� �min > 0 are the ordered gen-
eral eigenvalues of the matrix pair (Ryy;Ruu). The SINR
criterion is maximized when the weight vector equals to the
principle eigenvector of the above matrix pair, that is,

Ryy �wSINR = �max �Ruu �wSINR: (10)

Equation (10) depicts a deterministic way to �nd the optimal
beamformer. From the result of lemma 1, we can replaceRuu

by Rzz and still have positive eigenvalues. Power iterations
o�ers an e�cient and economic way to search the dominant
mode (DMS) in matrixR�1

zz Ryy. For the fact that the corre-
lation matrix's eigen-�eld varies slowly and power iterations
eventually converge faster than the correlation matrices, we

can modify the weight updating equation to execute power
iterations once per symbol's duration.

wSINR(n) = R
�1
zz (n)Ryy(n) �wSINR(n� 1): (11)

Just like the RLS method, the DMS su�ers from truncation
errors of �nite-digit sampling when it computes the data
vectors' outer products to estimate the correlation matrices.
This motivates us to develop a numerically stable QRD-DMS
method which updates the weights directly from the data
sequences.

In time varying environment, the most popular method
to estimate the data and interference correlation matrices is
to take the time average of the vectors' outer products over
an exponentially decay window.

R̂yy(n) = Y(n)HY(n);

R̂zz(n) = Z(n)HZ(n); (12)

where the data matrices Y(n) and Z(n) represent the re-
ceived data over the exponentially decay window. The only
known method to solve the above eigenvalue decomposition
problem in data domain is to solve the generalized singular
value decomposition (GSVD) problem [5] toward matrix pair
(Y(n);Z(n)). However, to do the GSVD is very computa-
tional intensive while doing the cosine-sine (CS) decomposi-
tion. Furthermore, we only interest in dominant eigen-mode
computations rather than �nding all the other eigen-modes
or orthogonal matrices. The above GSVD approach is not
practically satis�ed in our beamforming problem, and we
propose the following approach by using QRD to the joint
data matrices.

2.1. The Proposed Theory

Theorem 1 Assume Y;Z 2 Cn�p, and their joint matrix
is non-null, i.e. null(Y) \ null(Z) = f0g. The generalized
eigenvalue decomposition problem in the correlation domain

(YH
Y) �W = (ZHZ) �W ��; (13)

equals to solving the following problem in the data domain

H �W = R �W ��
0

: (14)

where the P � P complex matrices R and H can be obtained
by the following 3 steps:

1. Do a simple data transformation.

A =
(Y + Z)

2
; B =

(Y � Z)

2
: (15)

2. Do the QRD of the �rst joint data matrix.�
A

B

�
= Q

�
R

O

�
: (16)

3. Apply the same rotations to the second matrix.�
H

F

�
= Q

H

�
B

A

�
: (17)

The eigenvalues are transformed by �
0

= (�� I)=(�+ I).

The above theory says that we can solve the generalized
eigenvalue problem directly from the data matrix pair (R;H).
Let us see a useful lemma �rst which will be used in the proof
of the theory.
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Lemma 2 If null(Y)\null(Z) = f0g, then null(A)\null(B)
= f0g. The upper triangular matrix R is non-singular.

proof: we will prove it from the opposite way. If null(A) \
null(B) 6= f0g, then there must exist a vector w 6= 0 such
that�

A

B

�
w = 0; )

�
(A+B)
(A�B)

�
w =

�
Y

Z

�
w = 0:

(18)
Therefore, the joint matrix of Y and Z are null ( null(Y) \
null(Z) 6= f0g), which contradicts the assumption. The non-
singularity of the matrixR comes from the result that matrix�
A

B

�
is full rank. 2

It is a necessary condition to have R�1 exist not only for
the following proof but also for the systolic array's applica-
tions.

Proof (theorem) : From equation (15), we haveY = (A+B)
and Z = (A � B). The generalized eigenvalue problem in
equation (13) can be written as

(A+B)H(A+B) �W = (A�B)H(A�B) �W ��

) (AHB+BHA) �W = (AHA+BHB) �W ��
0

) [AHBH ]

�
B

A

�
�W = [AHBH ]

�
A

B

�
�W ��

0

:(19)

From the de�nitions of the matrices R and H,

[RHO]

�
H
F

�
�W = [RHO]

�
R
O

�
�W ��

0

) RH �H �W = RH �R �W ��
0

(20)

Since the upper triangular matrix R is non-singular, we can
take it out at the both sides of the above equation.

H �W = R �W ��
0

: (21)

where �
0

= (� � I)=(� + I) is a diagonal matrix. Since
(YHY) and (ZHZ) are all positive, � is positive and so is

the (�+ I). This means that �
0

always exists and is �nite.
2

2.2. The QRD-DMS Algorithm

From the de�nition of �(n) and �(n), we have

�(n) = [y(n) + z(n)]=2;

�(n) = [y(n)� z(n)]=2: (22)

Therefore, the matrices A(n) and B(n) can be written as

A(n) = [�
(n�1)

1=2
�(1); �

(n�2)

1=2
�(2); : : : ; �(n)]H :

B(n) = [�
(n�1)

1=2
�(1); �

(n�2)

1=2
�(2); : : : ; �(n)]H : (23)

R H R-H
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Figure 1: The QRD-DMS systolic array.

To have a easy way to update the joint data matrices, we up-
date the post-correlated vectors �(n) and �(n) to the bottom

rows of the joint matrices

�
A(n)
B(n)

�
and

�
B(n)
A(n)

�
, which

gives the following proposition.

Proposition 1 Shu�ing the rows of both joint matrices in
the same order does not a�ect the validity of the theory.

The proof is omitted here. To �nd the desire matrices R(n),
H(n) and R�1(n), we use a series of Given rotations [9],
T(n), to null out the P � 1 vectors �(n) and �(n). The
�nal matrix updating formula is shown at the top of this
page. Fig. 1 shows the resulting QRD-DMS systolic array.
It combines the given rotations and the power iterations to-
gether. Since we input two data per symbol, the systolic
array operates at 2X symbol's rate, so the weight vector can
be obtained by skewedly down sampled by 2. However, be-
cause of pipelining inputs, the present weight vector w(n)
is powered updated by w(n � P ). This reduces the con-
vergence speed of power iterations by a factor of antenna
number P . We multiplex and pipeline at least P user into
the systolic array in one symbol's duration to solve this prob-
lem. The working frequency is therefore increased to at least
2PX symbol's rate. Another advantage of multiuser pipelin-
ing is that the processing time of the beamforming weights
is shortened to less then 2 symbol's durations, so we can use
coherent beamforming combination ŝ(n) = wH(n) � y(n) to
enhance the performance instead of the post combinations
ŝ(n) = wH(n�m) � y(n), where m > 0.

3. SIMULATIONS AND CONCLUSIONS

In this section, we compare the performance of di�erent
beamforming algorithms by extensive computer simulations.
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Figure 2: Compare the uncoded bit error rate of the QRD-
DMS algorithm, the upper bound and lower bound.

We consider the uplink transmission in a pico cell CDMA
network which use DQPSK modulation scheme at 2.5 GHz.
The processing gain equals to 16 and the user's long PN
code is generated by a decided loop with period 223. The
received Eb=N0 equals to 6dB. A uniformly linear array is
implemented and each element is distanced by a half of the
central carrier wavelength �c=2. We simulate the multipath
propagation model of L = 2 multipath groups and M = 10
DOA partitions in each group [6]. The arriving angle diver-
sity is uniformly distributed over [�10�; 10�].

We compare the proposed algorithm to the other two
well-know beamformer methods : Equal gain diversity com-
bining and QRD-RLS algorithm. Since the diversity com-
bining does not need weight's computations, it is considered
as the performance lower bound. While the QRD-RLS al-
gorithm assumes that training sequence is available all the
time, and the coherent combining (ŝ(n) = wH(n) � y(n)) is
performed. The QRD-RLS's performance is always better
than the Wiener's solution since we equivalently use the se-
quence sk(1); : : : ; sk(n) to estimate the desired signal sk(n).
Fig. 2 shows the uncoded BER of QRD-DMS beamformer
when antenna element number P = 5 and active users N =
6. The exponential windowing factor for QRD-DMS and
QRD-RLS algorithms are � = 0:99. As we can see, the
convergence rate of our blindly adaptive algorithm is very
fast, in fact, it converges as fast as the unblind QRD-RLS
beamformer. Fig. 3 shows how good our estimation of in-
terference matrix is. The vertical axis shows the percent-
age of the estimation error kR̂zz � R̂uuk

2
F =kR̂uuk

2
F , while

the horizontal axis shows the interations. kRkF denotes the
Frobenius norm of the matrix R. We see the interference es-
timation converges at the same speed as the proposed beam-
former's performance. This implies the correlation matrix's
estimation is the critical process of the convergence, and it
is reasonable to use power iteration once per symbol in the
beamforming updation.

In this paper, we proposed an accurate estimation of the
interference matrix for the DS/CDMA systems. Based on
this interference's estimation, a simple and novel QRD-DMS
algorithm is introduced to update the beamformer directly
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Figure 3: The estimation error of the interference matrix
versus iterations.

from the data sequences. The QRD-DMS method o�ers nu-
merical stability and the local connections for VLSI imple-
mentations. We can further improve the hardware e�ciency
and the beamforming performance by multiuser multiplexing
and coherent weight's combining. Since the interference es-
timation is valid even if the desired signals are not perfectly
synchronized, the families of maximum SINR algorithms can
be easily extended to the jointly space-time processing in
DS/CDMA networks.
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