
RESOLUTION ENHANCEMENT OF COLORED IMAGES BY INVERSE

DIFFUSION PROCESSES

N. Sochen Y. Y. Zeevi

Department of Electrical Engineering

Technion{Israel Institute of Technology

Haifa 32000, Israel.

ABSTRACT

Algorithms for resolution enhancement are needed in
various applications of image processing and communi-
cation such as compression, and HDTV.

We develop a geometrical algorithm, based on dif-
fusion processes which are used both for smoothing of
colored images and enhancement of the colored images.
The latter is accomplished by \solving" an inverse dif-
fusion problem which is ill posed. In order to stabilize
the 
ow, as well as to enhance important features (e.g.
edges) on the expense of less important image domains,
we use a modi�ed Beltrami di�usion equation. Results
indicate that it is possible to impose the backwards

ow, in spite of the instabilities, and thereby enhance
the image up to a certain level of resolution which de-
pends on the nature of the image.

1. INTRODUCTION

In recent years there has been a great deal of interest in
various aspects of image enhancement. Since the bottle
neck of various communication channels does not per-
mit transmission of high resolution colored images with
currently existing compression techniques, some extra
processing in the form of image enhancement (\super-
resolution") is necessary [8].

We develop a geometrical approach where di�usion
processes are used both for smoothing the enlarged
image, when \time" is 
owing forward, and for en-
hancement. The latter is accomplished by allowing the
\time" to 
ow backwards, i.e. \solving" an inverse dif-
fusion process which is mathematically ill posed. In
order to stabilize the 
ow, as well as to enhance impor-
tant features (e.g. edges) on the expense of less impor-
tant image domains, we modify the di�usion equation.

Let us �rst look at a one-dimensional simple exam-
ple in order to simplify the problem. Suppose we have
a one-dimensional lattice �, of order j�j = M . The
one-dimensional \image" is given by the amplitude at
the lattice points, that is, Ii for i 2 �. We now want to

zoom-in by a super-resolution algorithm, and to obtain
more pixels with an appropriate higher resolution (i.e.
more detail). To this end, we multiply the number of
sampling points by m and construct a larger lattice �s.
We then embed � in �s in a natural way. The question
now is what should be the new values Isi for i 2 �s

? We call Is the \zooming-in" (or super-resolution) of
I. It is shown elsewhere [7] that the following relation
should be satis�ed:

(Ix)i = (Isx)mi i = 1; 2; : : : ;M; (1)

where the subscript x means derivative in the x direc-
tion. For higher dimensional cases we equate each one
of the partial derivatives.

Since numerical derivatives are approximated by
di�erences in our computational implementations, this
condition requires a wider dynamical range of Is. In
fact, the required dynamical range may be wider than
the bounds that image display permit. Obviously, the
problem is compounded in the higher dimensional color
space.

We, therefore, have to resort to non-linear rescaling
which preserves and enhances sharp transitions in in-
tensity on the expanse of the lower gradients which are
less important in vision.

In order to treat large gradients (i.e. edges) dif-
ferently from more homogeneous regions, we use the
Beltrami operator [6] which after some modi�cations
becomes most suitable for our enhancement needs [3].
We also add geometrical constraints to prevent the in-
tensity from blowing up.

2. EMBEDDING AND ENLARGEMENT

We take the original image as a two-dimensional lattice
� of size N�M, where the intensity at each pixel is
given by Iaij , where a = r; g; b. We then multiply the
x coordinate by a factor m and the y coordinate by n,
to get a mM�nN lattice �s. (Note that in most image
processing applications it is required that m = n.)



The problem can now be formulated as follows: How
should one �x the values of the intensity Is at the pixels
such that the enlarged image on �s looks like a �ner
scale image (i.e. enhanced as to appear sharper and
with greater detail) of the same scenario, given only
the lower scale which is the image on the lattice �.

We proceed in three steps:
1) Embedding: De�ne the auxiliary sub-lattice �e

as follows:

�e = f(i; j) 2 �sji mod m = j mod n = 0g ; (2)

where m and n are small integers for each step of the
lattice expansion. Then

(Is)aij =

(
Iai=m;j=n if (i; j) 2 �e
Iabi=mc;bj=nc + 
 if (i; j) 2 ��e

(3)

where ��e is the compliment of �e in �s, and 
 is i.i.d.
random variable with a small variance compared with
the range of the given intensities, and bxc denotes the
integer part of x.

2) Enlargement: We interpolate all pixels that do
not belong to �e by solving a di�usion process, given
the sub-lattice �e as a boundary condition, namely:

(Ist )
a
ij = (�Is)aij = (Isxx)

a
ij+(Isyy)

a
ij ; 8(i; j) 2 ��e : (4)

In other words, we interpolate by means of a poten-
tial surface in a way that conserves smoothness. One
can also try to interpolate by a minimal surface (with
the Beltrami operator for example) but this is dan-
gerous because the minimal surface, depending on the
boundary conditions, may break and change topology.
It is, thus, safer to stick with the potential surface un-
less a good a-priory knowledge of the image suggests
otherwise.

3) Enhancement: Various possibilities are described
in the next two sections.

3. ENHANCEMENT BY INVERSE

BELTRAMI FLOW

The Beltrami operator is the natural generalization of
the Laplacian from the plane to geometrically non triv-
ial surfaces (or higher dimensional manifolds).

It is expressed by means of the local metric on the
surface which we take as the induced metric. Explic-
itly, for grey level images, given as a function I(x; y), we
think of the image as a two-dimensional surface embed-
ded in a three-dimensional Euclidean space as follows:

(x; y)! (x; y; I(x; y)): (5)
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Figure 1: Line element form two view points: intrinsic
and extrinsic.

The induced metric is than the following symmetric
and positive de�nite matrix:

G =

�
1 + I2x IxIy
IxIy 1 + I2y

�
: (6)

We denote the elements of the metric by g��, those of
the inverse matrix by g�� , and denote by g the deter-
minant of the metric. The form of the metric, Eq. (6),
can be understood in a simple way. It expresses the
fact that the length of in�nitesimal curve segment on
the image surface can be measured on the surface or in
the embedding space with the same result (see Fig. 1):

ds2 = g��d�
�d�� = dx2 + dy2 + dI2

= dx2 + dy2 + (Ixdx+ Iydy)
2

= (1 + I2x)dx
2 + 2IxIydxdy + (1 + I2y )dy

2;(7)

where we identify the coordinates on the image surface
(i.e. (�1; �2)) with (x; y), and use Einstein summation
convention (i.e. indices that repeat twice are summed
over).

Similarly, we treat color images as an embedding of
a two-dimensional surface in a �ve-dimensional space

(x; y)! (x; y;R(x; y); G(x; y); B(x; y)); (8)

and the induced metric is

G =�
1 + R2

x +G2
x +B2

x RxRy +GxGy +BxBy

RxRy +GxGy + BxBy 1 +R2
y +G2

y + B2
y

�
:(9)

The Beltrami 
ow is than written as a gradient de-
scent equation

Iat = � 1p
g
hab

�S

�Ib
; (10)



where the action functional S is given by

S[Xi; g��; hij] =

Z
d2�

p
gg��@�X

i@�X
jhij(X):

(11)
For color images (X1; X2; X3; X4; X5) = (x; y;R;G;B),
and the metric of the embedding space is hij. By stan-
dard methods of calculus of variations we derive the
Beltrami di�usion 
ow (see [5] for derivation)

Iat = �gI
a =

1p
g
@�(

p
gg��@�I

a); (12)

which can be written in a vector-matricial form:

Iat = �gI
a =

1p
g
Div(

p
gG�1rIa): (13)

The Beltrami operator �gI is an adaptive smooth-
ing operator that does not a�ect edges as much as it
smoothes the homogeneous regions of the image. Tak-
ing the inverse of the Beltrami operator, 1=�gI, en-
hances the edges more than it a�ects other regions.
Since inverse Beltrami is a highly singular operation,
we regularize it by means of an exponential function,

Sign(�gI
a)e��1j�gI

aj; (14)

with a decay factor �1 as a free parameter of the reg-
ularization (selected in accordance with the instability
encountered in the implementation).

Obviously this is a highly non-stable 
ow and one
should proceed with care. In order to stabilize it, we
extract from the original image the metric (g��) that
describes the local geometry of the image. The de-
terminant of the metric, g, is a good measure for the
gradient at the point. In the extended image, the gra-
dients at the original image sub-lattice are smaller than
the gradients of the original image, simply because the
same change at the value of the pixels is now smeared
over a larger distance. We would like to stretch the
image in the intensity direction such that the metric of
the enlarged and stretched image (gs��) at the original
image-sub-lattice �e will be as close as possible to the
values of the original image. We add to this e�ect a
second term which controls the amount of change in
the intensity values according to the distance between
the zooming-in metric and the original image:

e��2(g
s�g)(Isa � Ia)�((x; y) 2 �e); (15)

where, again, �2 is a parameter to be �ne tuned by the
user. This condition is in the spirit of Eq. (1).

4. ENHANCEMENT BY A MODIFIED

INVERSE BELTRAMI FLOW

Since the metric is a symmetric, positive de�nite, bi-
linear form, we can diagonalize it as follows:

G = UT�U; (16)

where U is an orthogonal matrix that is built from
the eigenvectors of G. In particular for our grey level
image's metric,
UT
1 = (Ix; Iy)= (I2x + I2y ) is the gradient direction, and

UT
2 = (�Iy ; Ix)=(I2x+I2y ) is the perpendicular direction.
To enhance edges, we modify the metric as follows:

~G = UT

��1=� 0
0 �

�
U; (17)

where �1=� replaces the larger eigenvalue and � re-
places the second eigenvalue. Substituting this new
\metric" in the Laplace-Beltrami operator, and calcu-
lating all the derivatives explicitly, we get the unstable
inverse heat equation:

It = ��(Ixx + Iyy): (18)

In order to stabilize the 
ow we �rst smooth a copy
of the image by a convolution with a Gaussian (or
equivalently solving numerically the heat equation), and
then extract the metric from the smoothed image. In
this way we are guaranteed that the metric has all the
nice properties, since it is the metric of an image. De-
note by Îa� the smoothed color image components:

Îa� =

Z
dx0dy0

1

4��
e
(x�x0 )

2+(y�y0)
2

4� Ia(x0; y0); (19)

then the smoothed metric is 1:

Ĝ = ÛT �̂Û : (20)

Note also that jĝj = 1. The modi�ed 
ow now reads

Iat =
1pjĝjDiv(

p
jĝjĜ�1rIa)

= Div(Ĝ�1rIa) = Div(ÛT

��� 0
0 1=�

�
ÛrIa):

(21)

We may, as before, add local constraints to prevent the
intensity from blowing up.

The idea of stabilizing the inverse heat equation is
not new in image processing. Few references among a
vast literature are the \shock �lters" [4] for grey-level,
and its extension [1].

1This smoothing is similar to [2], and slightly di�erent from
[3] where the modi�ed Beltrami 
ow were �rst used.



Figure 2: (a): Original, (b): After linear smoothing,
(c): After size reduction.

Figure 3: (a): Enlargement of Fig. (2c). (b): Enhanced
version of the enlarged image (a).

5. RESULTS

We choose a colored MRI section of the brain, Fig. (2a),
and di�use it linearly to get the image depicted in Fig.
(2b). We then reduce it by half to get our source image,
Fig. (2c). Our algorithm starts with the image of Fig.
(2c). After the enlargement and smoothing stage, the
obtained image is depicted at Fig. (3b). The enhance-
ment result is shown in Fig. (3b). Note that processing
is executed in the �ve-dimensional space of the colored
images. We display only the achromatic component of
the original and computed images.

6. SUMMARY AND CONCLUSIONS

We have proposed a zooming-in condition Eq. (1) which
is valid in a situation where the dynamical range is
unbounded or large enough for the condition to have
a solution. For the generic case, this condition is too
stringent and we have to weaken the condition in an in-
telligent way. We opt for a distinction between higher
and lower gradients or, for the two-dimensional case,
for a distinction between higher values of the determi-
nant of the metric and lower values of it. In the case of
the higher values we tried to keep this condition while
leaving the lower values to depart greatly from it. The
image surface is trying, at the same time, to conserve
its smoothness as much as possible under the imposed
conditions.

Some results that show the e�ects and e�cacy of

this algorithm are shown in Sec. 5. One should keep
in mind that this is only a preliminary study and var-
ious aspects should be tackled. Numerical derivatives
may be re�ned to get a smoother result, color space ge-
ometry and coordinates should be studied for a better
representation and results. Finally, an objective func-
tional for quality measurement should be constructed
to get an optimal �ne tuning of the various parameters
of the algorithm. The latter is of course a general prob-
lem in assessment of image quality. As a by product
our study may result in some guidelines for the devel-
opment of such an image quality functional.
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