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ABSTRACT

The distance between 'texture primitives' is of major interest in
characterizing texture images.  This is especially natural when
the texture primitives are elongated structures aligned in
parallel to a common main axis, and the distance is measured
along the perpendicular axis. Such images arise, for example,
in flow visualization studies, where the elongated structures are
low-speed streaks. A point process based texture generation
model is developed for the one-dimensional texture along lines
perpendicular to the streaks. The point process models  the
location of the edges of the streaks, and using edge detection
techniques, its probability density function (pdf) can be
estimated  by  the histogram of the distances between the
edges.  It is shown that for the studied images the resulting
histogram is wide (coefficient of variation larger than half), and
demonstrated that in this case, previously suggested auto-
correlation based methods are not adequate.

1.  INTRODUCTION

Texture images may be described by simple texture primitives
that are arranged  in the image according to some rule, which
may  periodic or quasi-periodic, statistic, or semantic. Spectral,
statistical and structural approaches to texture analysis have
been  developed to address these different cases [6]. However,
while the spectral and structural approaches characterize the
distribution of the texture primitives, the statistical approach
characterizes only the resulting distribution of gray levels. Thus,
when the texture primitives are arranged stochastically the
relevant statistical methods do not provide direct
characterization of the distance between the texture primitives.

A special subset of texture images of interest here, is based on
elongated texture primitives placed in parallel to each other
(Figure 1). In this case the two-dimensional texture image is
being reduced to a one-dimensional texture along image lines
perpendicular to the major axis of the elongated primitives
(along columns of the image in Figure 1). The position of the
elongated texture primitives along that direction may be
specified by a one-dimension point process. We have developed
a point process based texture line generation model and used it
to propose image processing algorithm to characterize the point
process model and analysis tools to evaluate the shortcoming of
spectral approaches in characterizing such images.

The images studied here are taken by infra-red camera using a
new technique for visualizing the structure of turbulent flow
near the wall. The overall goal of the research is to study the

factors affecting heat transfer at the wall---a process of
tremendous economic consequences. Previous visualization
studies [8] have demonstrated the existence of coherent
structures in the turbulent boundary layer. The coherent
structures next to the wall are high speed regions and low speed
streaks (the dark and light bands in the image of Figure 1).
Important parameters concerning the coherent structures include
the distance and extent of the low velocity streaks.
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Figure 1. (a) Thermal image (185 by 250 pixels)
showing low-velocity high temperature streaks (bright
structures) separated by high-velocity low-temperature
dark regions. (b) A cross section of the  image along the
indicated column.

1.1 Previous Approaches

Previous analysis algorithms,  using different visualization
techniques, were based on spatial correlation of arrays of
measurements taken perpendicular to the flow (such as columns
in the image of Figure 1). The distance between the streaks was
estimated, for example,  by the distance between zero-crossing
in the correlation signal. However, the averaged correlation
exhibited very flat peaks [5[1], as demonstrated in Figure 2 for
the current study, making such estimations unreliable.
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In an effort to overcome this problem, it has been proposed  [1]
to locate the first positive peak of  the auto-correlation of
individual measurement arrays and use the average lag of the
first peak as an estimate of  the distance between the streaks.
However, this method is questionable, given the flat nature of
the averaged auto-correlation, as will be discussed later.
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Figure 2. Auto-correlation of columns of thermal
images averaged over 78 columns one from each image
in  a sequence of 78 images taken 0.5sec apart.

1.2 Visualization Technique

The  visualization technique and experimental setup are
described in [7]. Shortly, an infra-red camera is used to measure
the temperature field on the surface of a  heater made of 50 µm
constantan foil, which was installed in the floor of the duct. It is
assumed that the heater is thin enough so that the temperature
measured on the outside reflects well the temperature of the
heater exposed to the flow. Hence, the velocity field of the flow,
which affects the local heat transfer, is visualized by imaging
the temperature field (Figure 1). Low temperature (dark
regions) reflects high-speed and high temperatures (light

region) reflects low speed.  The temperature range of 2oC  is
imaged into 256 gray levels.  The image of Figure 1 includes
185 by 250 pixels and covers an area of  13.3 by 10.4 cm.

2. TEXTURE GENERATION MODEL

2.1 Point Process based model

Given the elongated texture of the flow images, we are
interested in characterizing the width and distance between the
streaks in the direction perpendicular to the flow. While the
temperature may vary from one streak to another and across a
streak, we neglect this information in this stage and retain only
the information relating to the position of each streak and its
width. This information is best represented by the edges of the
streaks.

Along lines perpendicular to the flow, the edges appear as sets
of points marking the beginning and end of the streaks. From an
information point of view, the location of these points can be
modeled  as a stochastic point process on the line [3].  Since two
types of points are generated, those indicating the beginning and
end of the streak, a marked point process is used, where the
mark associated with each point is either  ‘-’ (beginning) or ‘+’
(end) of a streak. Clearly, the marks are alternating as each

'beginning of streak' should be associated with an 'end-of-streak'.
Thus the underlying marked point process can be described by
the statistics of  the intervals between '+’ points  to ‘-’ points
and  ‘-’ points  to ‘+’ points.
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Figure 3. Point process based line texture generation
model

While not critical for the development of the model, we assume
here that the statistics of the intervals between the points is the

same regardless of their mark. We denote by f X( )  the

probability density function (pdf) of the intervals between the
points.  A realization of a point process is a set of intervals

{ }Xi  between the points. Since points can have either a ‘+’ or

a ‘-’ mark, each realization can be described by a bipolar pulse

train p k( ) , taking the value +1 or -1 when a point with mark

‘+’ or ‘-’ exists in the interval [kδ, (k+1)δ], respectively, and 0
otherwise (δ is the spatial resolution of a pixel).  Thus, the

measured temperature profile along an image column T k( )
can be modeled as the output of a low pass filter whose input is
a ‘box’ signal generated by summing the pulse train:

 y k p l
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with y(0) = -.5

Assuming that the first point is marked ‘+’ and that there is an
even number of points, the resulting signal y(k) takes the values
+.5 or -.5 and is centered around zero. Finally,
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T k y k h k( ) ( ) ( )= ⊗

where, h(k) is the impulse response of the spatial filter and ⊗
denotes convolution.  The stochastic texture line generation
model is shown in Figure 3.

2.2 Auto-correlation Analysis

From the stochastic texture generation model of Figure 3, the

auto-correlation of the output signal A mT ( )  can be evaluated

based on the probability density function f X( )  of the

underlying point process model. First, the auto-correlation

A mp( )  of the pulse train is the discrete version of the

continuous space auto-correlation:
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where the continuous space auto-correlation Ac  is given

as the sum of the r-fold convolution f Xr( ) ( )   of the pdf

[3]:
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The auto-correlation of the ‘box’ signal y k( )  generated by

summing the pulse train p k( ) , is given by:
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The final output signal is a filtered version of the box signal and
its auto-correlation is given by [9].

A m A m h mT y( ) ( ) ( )= ⊗
Thus, the auto-correlation of the output signal is an integrated
and filtered version of the auto-correlation of the underlying
point process model.

2.3  Simulation

The texture generation model has been simulated to demonstrate
the relationship between the auto-correlation of the signals at its
different stages.  Gamma pdf [3] , shifted by a single pixel, were
used to produce either a narrow pdf with coefficient of variation
(CV) less than half or a wide pdf with CV greater than half,
respectively (Table I). A narrow pdf resulted in an oscillating
average auto-correlation at all the stages of the model (Figure 4,
upper panel) and the location of the first peak, or alternatively
the location of the peak in the power spectrum (not shown),
provides a reliable estimate of the mean interval µ. In contrast, a
wide pdf resulted in an average auto-correlation that exhibits
weak oscillations which are smeared by the integration and the
filtering stages (Figure 4, lower panel). In this case, neither the

peaks of the auto-correlation nor those in the power spectrum
provide reliable estimates of the mean interval µ.
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Figure 4. Average auto-correlation of simulated pulse
train (solid), box train (dashed) and output signal (dots)
at the different stages of the texture generation model
based on a narrow pdf (upper) and a wide pdf (lower)
with parameters of Table I. Average based on 16
samples of 185 long vectors.

Considering a single column, the auto-correlation of the output
signal does exhibit a first peak. However, the integration and
filtering stages have the effect of shifting the first positive peak
toward higher lags. Simulations results, with the wide pdf of
Table I,  demonstrate that the estimator proposed in  [1],  based
on the average lag of the first peak in the auto-correlation of
individual columns, is biased by as much as 40%.

3. FEATURE EXTRACTION METHOD

3.1  Edge Detection

The texture generation model is based on a point process model
to produce the location of the edges of the streaks along lines
perpendicular to the flow. Thus, samples of the underlying point
process model can be recovered from the images by detecting
the edges of the streaks. We have used a Canny-based edge
detection method [2] and applied specially designed Dilation
and Erosion morphological operators for linking edges in the
direction of the flow (raw-wise). The detected edges and thus
the measured distances are sensitive to the threshold used in the
edge detection algorithm. However, the sensitivity is modest
along a wide range of threshold values and we selected the
threshold at the upper  limit of this range. The edge detection
output is demonstrated in Figure 5, overlaid on top of the
processed image.

The gradient operator applied in edge detection has a pre-
whitening effect, as suggested previously [4]. However, there
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the resulting image was used to generate a histogram of the
decorrelated gray levels, while here the edges are localized and
the histogram of the distance between the edges is computed.

3.2 Distance and Width of Streaks

Given the highly correlated nature of the images (in the
direction of the flow), only a single column from each image has
been considered as an independent sample of the underlying
point process model. Different samples were selected from
seventy-eighth images taken 0.5sec apart to avoid temporal
correlation. Since the edge detection procedure is not perfect,
candidate columns were tested for validity before being
considered as samples of the underlying point process. Valid
columns should have included alternating ‘+’ and ‘-’ edges.

The histograms of the distances (normalized to unit area), and
the best matching shifted Gamma distributions, are shown in
Figure 5; the corresponding parameters, are given in Table I.
The results indicate that the underlying point process model is
indeed wide.
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Figure 5. Detected edges overlaid on thermal image (a).
Normalized histograms (b) of distance between edges
bounding the dark regions (separation between streaks),
and between edges bounding bright regions (width of
streaks), with best matching shifted Gamma distribution
parameterized in Table I.

4. SUMMARY

We have found that the separation between the streaks and the
width of the streaks are widely distributed. In the framework of
the texture generation model proposed here, this information
characterizes the underlying point process model. We have
shown that when the pdf of the underlying point process model
is as wide as the resulting histograms, auto-correlation based
methods do not provide a reliable technique for estimating the
mean distance between the streaks. The edge-based method
proposed here provides a full characterization of the separation
and width of the streaks; not only their mean value. Further
analysis using this technique can be applied to study how the
separation between the streaks, and how the temperature of the
streaks, depend  on the width of the streak.

Parameters Gamma
Case mean µ σ min ρ α s

Simulation
 Narrow (a) 7 1 1 6 36 1
 Wide (b) 7 4 1 0.375 2.25 1
Data
 Width 7.3 4.3 1 0.34 2.15 1
 Separation 8.4 4.6 1 0.36 2.65 1

Table I Parameters of pdf used in simulations and of
histograms derived from data analysis; along with
coefficients  of the best matching shifted Gamma pdf.

f X X s e X s( ) ( ( )) / ( )( ( )= − − − −ρ ρ αα ρ1) Γ
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