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ABSTRACT rather heuristic and do not attempt to find an optimal value. In

[4] it was suggested that the filter be implemented in parallel

A measure for the effective length of the impulse response of ag 1y employing second-order filter sections and using a rough
stable recursive digital filter based on accumulated energy IStime-constant-based measure for the length of the impulse

proposed. A general definition and a simple algorithm for its response ofach section. Arupper bound for estimating the

gvalluaélc?n e]:re mt(;oducedh and c:qosedf;form fexpressmnshareresu'ting errors for a giveh was derived in [1] and [8] but no
erived for first-order IR filters. The effect of zeros on the explicit measure for determiniigwas given.

effective length is analyzed. An upper bound for the effective
length of higher-order filters is derived using results for low- Previously, three different amplitude-based methods have been
order filters. The new measure finds applications in several fieldsused for measuring the effective length of an infinitely long but
of digital signal processing, including estimation of the extent of decaying impulse regsnse. 1) In [7], a general durationof a
attack transients for filters with dynamically varying inputs, signal was defined. The discrete-time version of the expression is
elimination of transients in variable recursive filters, and design

and implementation of linear-phase IIR systems. d? :% 3 n?x( n)|2 with E= Y[ n)|2 ()
n=-oco n=-oco
1. INTRODUCTION whereE is the total energy of the signal. 2) A traditional tech-

. . o . .. .. nique is based on the concept of a time constant. Typically, the
The impulse response of a stable recursive digital filter is infi- iha constant of the pole with the largest radius is used for

nitely long in principle, but due to exponentiacady it eventu- estimating the decay rate of the impulsepeese and an ampli-

ally sinks below the quantization step or the noise in the systemq,qe threshold is chosen to determine the effective length [6].
Thus, in practice the impulse response of a stable recursive filtelg it has proposed to approximate this time constant as 1/(1 —
can be regarded as finite. A measure for the effective length Ofrmay) which is obtained by truncating the Taylor series of the
the impulse response of an IIR filter is needed in several applica-gy 4t equation [9], [11]. Based on merely one pole of the system,
tions, e.g., in estimation of the effective length of the attack tran-is measure is easy to use but gives a crude estimate for the

sient of a recursive filter [2]. effective length. 3) Furthermore, an amplitude threshold can be
When changing the coefficients of a recursive filter, transients Set and the effective length be determined as the sample index
will occur. These transients depend on the filter input, but an Where the impulse response ultimately goes below this threshold
impulse-response-based measure can be used to characteriz&0]- In principle, this technique gives a better approximation.
them. A special case of this problem is encountered when thelhe drawbacks are the lack of analytical methods and the com-
transients are eliminated using a novel technique by updating thélication of the measure when the impulse response does not
state variables of the filter [10], [11]. The transient can be decay monotonically.

canceled .within desired accuracy, but this accuracy depends Oftrom the above it is apparent that several ways to measure the
the effective Ier?g'th of the impulse response of the filter after the o¢tactive length of infinite impulse responses have been sug-
change of coefficients. gested but none of them seems to have gained avideptance.

Still another application for the effective length of an infinite This paper introduces a meaningful yet simple and practical defi-
impulse response is a realization technique for linear-phase IIRNition. We define the effective length of the impulse response of a
filters based on cascading a minimum-phase IIR fHte) and general recursive filter based on the accumulated percentage of
its maximum-phase (unstable or noncausal) countekét) the total energyThis concept has_ several advantages: _1) the
[4], [1], [8]. The filtering is based on processing the input signal energy of an additive disturbance is a natural measure in many
in finite-length blocks ofL samples. The basic constraint is to applications, 2) the total energy of a given filter is easy to deter-
choosel so that the impulse responseH() has decayed to a  Mine either in the time or in the frequency domain, thanks to
small enough level. On the other hand, block lergghould be Parseval's theorem, and 3) the measure is parametric and thus
chosen as small as possible to minimize latency. Althaugtan flexible.

essential system parameter, techniques to determine its value are



2. EFFECTIVE LENGTH OF A GENERAL Table 1. Algorithm for computing the effective length of
RECURSIVE FILTER a general recursive filter.

Step 0:ComputeE andE; for the chosef®. Initialize:n = 0,
x(nN)=0(n), h(-1) =h(-2) =...= h(-N)= 0, Ep(-2)=0

2.1 Definitions

Consider aNth-order recursive filter with transfer function
_B(® _hp+bzt+ +hy 7"
HE@)=— = = N @) ,
(2 1+az +..+g 2 Step 2: Ex(n) = Ex(n-1)+| K 1)

where filter coefficientsy andb, are real-valuedk(= 0, 1, ...N). Step 3:1f Ex(Np) = Ep = PE /100, therNs = n and stop; elsa =
Assuming a stable and causal implementation, the recursive filtemn + 1 and go to Step 1.
(2) can also be described via an equivalent difference equation as

N N
Step 1:h(n)= S hX(n-B-35 gk m m
k=0 m=1

N N 3. LOW-ORDER ALL-POLE FILTERS
Y=Yy bXn-R-5 g ym ) for 20 (3)
k=0 m=1

3.1 First-Order All-Pole Filter
wherex(n) andy(n) are the input and output of the filter, respec-

tively. When the input signal is a unit impubg@) = &n), which Consider a first-order all-pole filter with the transfer function
equals unity ah = 0 and zero elsewhere, the outpn) = h(n) is _ 1
the impulse response of the filter. H(2) _1/(1 az-) ®6)

wherea is real-valued and the pole radits 1= r < 1 for stabil-
ity. Its causal impulse response is simp{y)) = a" for nonnega-
tive n. AccumulatecenergyEa(Np) can be expressed as

Np n Np+1[]
S R e i
:TfH(Z)H(Z Yz dz n=0 o
1 from which the total energy is also obtained as a liMit { o)
— 2 H
where the frequency-domain expression follows from the Parse-2SE = 1/(1 —r). The requirement (5) now becomes

val relation. The determination of the integral in théomain P 1 =)
i EA(Np)2 = E 8
has been addressed in [3], for example. Al P)—ml_ 7~ 100 (8)

Thetotal energyof the causal impulse resportge) is defined as

0 m . 2
E= ngohz(n)zz_ln_f | H(e'w)| o

We define theenergy-based effective length (Edg the smallest  and the EL can be solved as
nonnegative integer time indé¥ by which at leasP% of the

total energy of the impulse response has arrived. The corre- _Oog(1-P /100 _15 ©)
. = B—
spondingaccumulated energy,B\p) can be expressed as g Iog(rz) g
N
EA(Np)= zp W ()= B =P E (5) where the logarithm can have any (positive) basel#idenotes
n=0 100 the ceiling operation (i.e., rounding upwards). Note that quanti-

. . ) zation is necessary becademust be an integer.
Hence, we always requies(Np) = Ep since the effective length y e g

Np must be an integer. Note that this differs slightly from the Figure 1 presents the BN, for P = 90%, 95%, and 99% as a
usual definition of length of the corresponding FIR filter: the function of pole radius computed according to (9). These
truncated part contains, + 1 samples but the effective length curves show the expected phenomenon that the EL of the
(5) is one lesd\s. The energy-based length (for any percentage) impulse response increases rapidly as pole radagproaches
of a filter with a unit impulse as the impulse response is thusthe value 1. Furthermore, it is seen that the EL is fairly insensi-
zero, and that of a two-point averager is unity, which is in accor- tive to the percentage value so that the lengths corresponding to
dance with common sense. 90%-99% energy do not differ much except for when pole radius
r is larger than 0.9.
2.2 General Algorithm
3.2 Second-Order All-Pole Filters
The most straightforward way to compute the impulse response
of a given causal and stable recursive filter is to use the differ-Similar derivations can be conducted for second-order all-pole
ence equation (3). When the total enekgis precomputed, the filters. Three different cases have to be elaborated separately: a
correspondingaccumulated energa(Np) = Ep for the chosen ~ complex-conjugate pair, a double real pole, and two distinct real
percentageP can be determined recursively via the algorithm poles. The derivations are more involved than in the first-order
presented in Table 1. This simple algorithm can be used for manycase. Furthermore, exact closed-form formulas cannot be derived,
recursive filters. However, for narrowband filters the length can but simplified approximations or upper and lower bounds can be
be hundreds of samples. For low-order all-pole filters more prac-arrived at for the complex-conjugate case. For the other two
tical closed-form expressions can be derived. cases, it is only possible to derive closed-form formulas for
accumulatedenergy EA(Np) and total energye. Unfortunately,
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Figure 1. The effective length of a first-order all-pole

filter for P = 90% (solid line)P = 95% (dashed line),
andP = 99% (dotted line) as a function of pole radius

these do not lend to an easy closed-form solutiohNfpbut they
can be used to efficiently search for minimidmby successive
evaluations. Using binary search, abouty(Ng) evaluations are
needed, as comparedNp steps of the algorithm of Table 1. For

example, if we can assume that the EL is at most 256, only 8

evaluations ofEp(Np) and E are required. The derivations are

omitted due to space limitations. Details are available in a long

version of this work [5].

4. ON THE EFFECT OF ZEROS

The above results consider all-pole filters only. In this section we

show how the zeros affect the EL of recursive filters’ impulse
response. A general first-order filter is studied in detail after
which general conclusions are drawn for higher-order filters.

4.1. General First-Order IIR Filter

Let us consider a first-order IIR filter with transfer function
H(z) = c(1- bzY)/(1- azY) (10)

where a, b, and ¢ are real-valued andialkl. The impulse
response is now

BQ n<o
h(n)=Q c, n=0 (12)
Ep(a— had™l, n=1.
The accumulatednergyEa(Np) is (for Np > 0)
Ea(Np)= @0+ 3 (a- 92 20795
B n=1 B (12)

=c? +cX(a- ha- a&)/a- D
from which the total energy is obtained as a limitNas- )

E = 2(1- 2ab+ F)/(1- &) (13)

The EL can now be solved as
Oog(1-P /100 + log L(a,b 0
N = ool 9+ logL@b] 7

g log(a®)

where L(a, b) = (1- 2ab+ t?)/(l— b/ z)z :

(14)

It is seen that (14) is the same as (9) except for a additive new
term logL(a,b)]. Since logé?) < 0, this term increases the length

of the impulse response whe(a,b) is smaller than unity, which
happens whefb —a>Call. In the limit the additional term goes
asymptotically towards the minimum value lbgi,b)] — log(@®)
when[bO- o, which means that the impulse response is length-
ened by one sample at most. In this case the numerator approxi-
mates a unit delay, i.e., lbz'= bz,

On the other hand, the impulse response is shorter than (or equal
to) that without the zero wheob — alk[(all. For zeros close
enough to the pole, the EL is suppressed down to zero. When

a, the zero exactly cancels the pole and the impulse response
reduces to a unit impulse.

4.2N Zeros

The conclusions for the first-order filter can readily be general-
ized for higher-order filters. Consider a general recursive transfer
function H(2) = B(2/A(2) with the numeratoB(z) of orderMg.
Assuming a fixed denominator, the longest possible impulse
response corresponds to a delayfunits (one per each zero)
and it is attained when the highest-order coefficiegt —of

B(2) =+ k;z"1+...+ QAB zMe s large enough compared to

the others. The EL thus has an upper bound
g10d
Np{H(2)} < NpG——0+ Mg (15)
0A(9 O
The smallest possible EL for the high-order filter is zero which
naturally occurs due to (approximate) cancellation of all of the
poles by corresponding zeros. This result is used in the next sec-
tion to obtain a general bound for high-order filters.

5. HIGH-ORDER RECURSIVE FILTERS

Analytical treatment of higher-order filters soon becomes cum-
bersome. Instead of trying to derive complicated formulas of
questionable utility, approximate upper bounds are derived. Let
us focus on the case of effective length for a relatively 1&ge
(90...99.99%) so that most of the energy has arrived by time
indexNp and we can neglect the tail of the impulse response. We
define the lengthNy truncated impulse response as

th(n), forn=0, 1, ...,Np

() = Ep otherwise (16)

As the truncated impulse response is genuinely finite-length, we
can obtain a simple approximative limit for the length of the
convolution of two impulse responsegn) andh,(n) with effec-

tive lengthsNp; andNp, as

Np{h(mOh(n} = No{ bra( D0 Bl W< N+ Ny (17)

This follows because the length of the convolution of two



sequences of lengthBl{; + 1) and Np, + 1) is equal tdNp + 1 =
(Npp + 1) + Np2 + 1) =1 =Np; + Np + 1, 0rNp = Npp + Np
(remember that theffectivelength is one shorter than the num-
ber of coefficients!). Applying this result for many convolutions
we can express a formula for a filter consisting{ gfubsections:

Np{h(MOK(ND. Ok (D} < N+ Nopto+ N (18)

i.e.,P =100%x (1 — 107) = 99.99999%, results in the exact EL

of Np = 160 samples. Hence, assuming that the energy-based
criterion is suitable for the application, 20% savings in the proc-
essing delay can be achieved by using the proposed EL of the
impulse response.

7. CONCLUSIONS

Let us then consider a transfer function where poles are divided

into at most second-order real-coefficient sections as follows:
KA
H=B2/A3=BY[] KX (19)
k=1

where the numeratoB(z) is of orderMg, and K, denotes the

number of sections in the denominator. Combining (18) with

(15), we obtain an approximative upper bound for the EL as

_ o B Ka A Ka 01 O
Np{ H(2)} = Np%a z)/k|'=|1 A ES N+ mmg(zo)

k=1

A new approach for determining the effective length (EL) of the
impulse response of a recursive filter based oratteeimulated
energy was proposed. The energy-based measure is argued to be
better suited for many signal processing problems than former
techniques that focus on the amplitude of the impulse response or
the time constant of the system. Alongside a simple recursive
algorithm to determine the EL for any stable IIR filter, closed-
form formulas were derived for first-order all-pole and pole-zero
filters. The effect of zeros was studied in a general case, and an
approximate upper bound was derived for estimating the EL for
higher-order filters using formulas for low-order filters. The

This is a general-purpose result which can be applied to any kindesults of this paper find applications in several fundamental and
of stable filters when the factorization to first or second-order advanced signal processing problems. An example of the appli-
real-coefficient sections is available. Note that the obtained esti-cation of the new measure to the design of the block length in

mate for the EL is an approximate upper bound and it may belinear-phase IIR filtering was presented.

pessimistic for filters with poles and zeros close to each other.

6. APPLICATION EXAMPLE
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the length of the impulse response of the IIR filter is crugigl.
discussed in the Introduction, linear-phase IIR filters can be
implemented by cascading a minimum-phase IR fitér) and

its maximum-phase counterpat(z™). For this the effective [1]
length of H(z2 must be determined. In [4], Kormylo and Jain
designed a third-order elliptic lowpass filter for the processing of

a noisy ECG signal. The filter specifications were: passband
ripple A, = 0.05 dB, passband cutoff frequenoy= 0.175t (or

35 Hz for 400 Hz sampling frequency), and stopband attenuation[g]
A, = 16 dB. For the cascaded linear-phase system the ripple val-
ues are of course doubled, i.e., the composite stopband attenuz;fl]
tion is 32 dB.

For block implementation, an estimate for the length of the [5]
impulse response of the elliptic filter is required. In [4] it was
suggested (apparently heuristically) that the length of four times
the time constant of the pole with the largest radius should be [6]
used, which yields the length estimate of 24.25 sample intervals
(using Smith’s approximation, i.e., time constant 1/(1 —r .y [7]
—in [4] no figures were given). The desired 32 dB stopband
attenuation suggests that at most£@ 0.00063096 or 0.063%  [8]
of the impulse response energy can be lost in the truncation,
which corresponds tB = 99.937%. This yields an energy-based

EL (exact, using the algorithm of Table 1) df = 21 samples, [9]
which is not far from the Zestimate.

In [8], Powell and Chau employed a seventh-order elliptic low-
pass filter with the passband ripplg = 0.005 dB, passband
cutoff frequencyw, = 0.65t1 and stopband attenuatig¥ = 35

dB. Requiring that a bound for the maximum amplitude of tran- [11]

sient errors be 70 dB below the signal level, it was derived in [8]
that the block length of 200 samples Ecessary. By requiring
the residual energy of the impulse response to be below 70 dB,

(10]
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