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ABSTRACT

The two criteria most commonly used in blind equal-
ization are Sato's cost function and Godard's cost func-
tion. In this paper we analyze a sign-error cost function
for real signals which gives an error term that can be
viewed as the sign of either the Sato or the Godard er-
ror. We show that the conventional de�nition of equal-
izer convergence is not suitable for analyzing this cost
function. A more realistic de�nition of convergence for
low to medium SNR situations is presented and used to
analyze this sign-error cost function. The performance
of this cost function is evaluated via simulations and
shown to have excellent performance as compared to
the Godard cost function, with substantially less com-
plexity.

1. INTRODUCTION

Blind equalization for digital communication systems
subject to intersymbol interference (ISI) has been an
active research area for a number of areas. One of the
application areas is digital television (DTV) transmis-
sion where the signal is subject to multipath conditions
caused by re
ections o� buildings, towers, etc. The
equalizer in such a DTV receiver is fairly long due to
the nature of the multipath channel. For instance, the
prototype DTV receiver built by Zenith had a 256 tap
equalizer. One of the main considerations when imple-
menting such a long equalizer is the complexity of the
blind adaptation algorithm. Conventional Godard [1]
or Sato [2] errors involve a multiplication of the error
signal with the data for each tap update which leads
to increased area due to the large number of equalizer
taps. Hence, a sign-error algorithm would greatly re-
duce the complexity.

In [3] a sign algorithm for QAM transmission is ex-
plored where it is shown by simulation that the sign
version performs very close to the Godard's algorithm.
However the cost function proposed there has the 
aw
that, for real signals, the derivative with respect to the
equalizer taps is not equal to zero at convergence, as it

is, for example, with the Godard and Sato cost func-
tions.

In this paper, we analyze the sign-error cost func-
tion for real signals only and show that by de�ning
\equalizer convergence" in a more realistic manner, one
can choose the cost function such that the derivative
with respect to the equalizer taps is zero. Section 2
brie
y recaps the Godard and Sato cost functions and
presents the sign-error cost function and shows how it
can be viewed as the sign version of either of the above
cost functions. Section 3 presents the new de�nition
of convergence and derives the sign-error cost function
that has a zero derivative at convergence. Section 4
presents simulation results comparing the performance
of the sign-error cost function to the Godard cost func-
tion. Finally, conclusions are presented in Section 5.

2. COST FUNCTIONS FOR BLIND

EQUALIZATION

In this paper we will consider only real signals. The
case of complex signals will be mentioned in Section 5.

Let ak be the transmitted real symbol stream. In
the following, for clarity, we will assume that ak is
drawn from a 8-level PAM constellation. This does not
a�ect the generality of the result. The received signal
rk after multipath distortion and added noise can be
written as:

rk =

Lh�1X
i=0

hiak�i + nk (1)

where hi, i = 0; � � �Lh � 1, is the multipath channel of
length Lh and nk is the additive noise, assumed to be
white and gaussian. The received signal is processed
by an equalizer, which in the most general case is a
decision feedback equalizer (DFE). The output of the
equalizer ~ak is an estimate of the transmitted signal
and is expressed as:

~ak =

Lf�1X
i=0

firk+df�i +

LbX
i=1

biâk�i (2)



where fi, i = 0; � � �Lf � 1 are the forward equalizer
taps, bi, i = 1; � � �Lb are the feedback taps, df is the
delay through the forward equalizer and âk is the con-
stellation point closest to ~ak.

Since a training sequence is unavailable to a blind
equalizer during the adaptation period, the mean squ-
ared error (MSE) at the equalizer output cannot be
used in a stochastic gradient algorithm for adapting the
equalizer. Instead, some kind of \cost function" that
depends only on the equalizer output and the known
statistics of the transmitted symbol stream is required
in order to adapt the equalizer coe�cients. Two widely
used cost functions are the Godard (CG) and Sato (CS)
cost functions de�ned as follows:

CG = E

����j~akj2 �RG

���2
�
and CS = E

h
jj~akj �RS j2

i

The above cost functions give the following error terms
for use in the tap update algorithm:

eG(k) = ~ak
�
j~akj2 � RG

�
(3)

eS (k) = sgn(~ak) (j~akj �RS) (4)

where the tap update algorithm is given by:

f
a

(k + 1) = f
a

(k) + �eX (k)ra(k)

b
a

(k + 1) = b
a

(k) + �eX (k)~aa(k)

Here � is the step size, r
a

(k) and ~a
a

(k) are the data in
the DFE �lters at time k and eX (k) is the error term
(could be eG(k), eS (k) or something else).

The values of RG and RS are determined by setting
the derivative of CG and CS respectively with respect
to the �lter taps equal to zero when the equalizer

has converged, i.e. when ~ak = ak. This gives us:

RG = E
h
jakj4

i
=E

h
jakj2

i
; RS = E

h
jakj2

i
=E [jakj]

For a 8-PAM signal with signal points �1;�3;�5;�7,
the value of RG is 37 and RS is 5.25.

Now, let us consider the following sign-error cost
function:

CSE = E [jj~akj � RSEj] (5)

This cost function has the following error term for use
in the tap update algorithm above:

eSE(k) = sgn(~ak)sgn(j~akj � RSE) (6)

Comparing equations (3), (4) and (6) we see that if
RSE =

pa
RG then eSE (k) is equal to sgn(eG(k)) and if

RSE = RS then eSE(k) is equal to sgn(eS (k)). Hence,
depending on the choice of RSE , the sign-error cost
function can be viewed as the sign version of either
the Godard or Sato cost functions. The implementa-
tion advantage of such a cost function is immediately
apparent - the tap-update step does not have a multi-
plication between the error term and the data vector.

3. DERIVATION OF OPTIMUM RSE

In order to determine the optimum value of RSE , if
we follow the same procedure as before for the Godard
and Sato cost functions, i.e we set the derivative ofCSE
with respect to the equalizer taps equal to zero when
~ak = ak, we get E[sgn(ak)aksgn(jakj � RSE)] equal to
zero. However, it can be easily shown that if ak be-
longs to a 8-PAM constellation, this function does not
become zero for any value of RSE. The best that we
can do is choose RSE between 5 and 7 to get the min-
imum value of the derivative which is -0.5 in this case.
This does not tell us what value of RSE is the optimum
choice.

Let us now change the de�nition of \equalizer con-
vergence". Previously, it was assumed that at conver-
gence we had ~ak = ak, i.e. convergence was de�ned
as when the equalizer output is equal to the transmit-
ted stream. Clearly, in an ISI channel with �nite length
equalizers and additive noise, this is not a valid assump-
tion. Instead, let us assume that when the equalizer has
converged, the output is expressed as:

~ak = ak +Nk (7)

where Nk is the sum of additive noise through the �lter
and left over intersymbol interference. In general, this
noise is not gaussian, but the central limit theorem can
be used to make the reasonable assumption that Nk is
gaussian. Hence, let us assume thatNk is gaussian with
mean zero and variance �2N . With this assumption, let
us de�ne the derivative of the cost function CSE at
convergence, d(RSE), as follows:

d(RSE) = E [aksgn(~ak)sgn(j~akj �RSE)] (8)

= E [aksgn(ak + Nk)sgn(jak + Nkj � RSE)] (9)

=
X

a2(�1;3;5;7)

a p(a)

Z 1

�1

sgn(a+N ):

sgn(ja+ N j �RSE)
e
� N2
a

2�2
N

a

�N
pa
2�

dN (10)

=
X

a2(�1;3;5;7)

a p(a)

2
64�

Z �RSE�a

�1

e
� N2
a

2�2
N

a

�N
pa
2�

dN

+

Z �a

�RSE�a

e
� N2
a

2�2
N

a

�N
pa
2�

dN �
Z RSE�a

�a

e
� N2
a

2�2
N

a

�N
pa
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dN

+

Z 1

RSE�a

e
� N2
a

2�2
N

a

�N
pa
2�

dN

3
75 (11)

=
X

a2(�1;3;5;7)

a p(a)

�
1 + 2Q

�
RSE � a
a

�N

�



a

a

a a SNR (dB) a RSE a a SNR (dB) a RSE a a
a

a a 16.0 a 5.5680 a a 21.0 a 5.3458 a a
a a 17.0 a 5.5350 a a 22.0 a 5.3071 a a
a a 18.0 a 5.4899 a a 23.0 a 5.2733 a a
a a 19.0 a 5.4392 a a 24.0 a 5.2434 a a
a a 20.0 a 5.3900 a a 25.0 a 5.2169 a aa
a

Table 1: SNR Vs. RSE for 8-PAM constellation

�2Q
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�
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a
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��
(12)

=
1
a

4

X
a2(1;3;5;7)

a

�
1 + 2Q

�
RSE � a
a

�N

�

�2Q
��a
a

�N

�
� 2Q

�
RSE + a
a

�N

��
(13)

where it is assumed that all the points in the constel-
lation are equally probable (i.e. p(a) = 1=8) and the Q
function is de�ned as follows:

Q(a) =
1
apa
2�

Z 1

a

e�
x2
a

2 dx (14)

In order to obtain the optimum value of RSE , we
need to solve d(RSE) = 0. This can be done numeri-
cally to give a value of RSE that depends on �2N , or the
output SNR of the equalizer de�ned as 10 log(�2a=�

2
N ).

In this respect RSE di�ers from RG or RS of the Go-
dard and Sato cost functions, because those are inde-
pendent of the SNR. However, it is fairly straightfor-
ward to calculate RSE for various SNR's beforehand.
Table 1 gives the optimum value of RSE for various
SNRs for the 8-PAM constellation. Figure 1 shows
how d(RSE) varies with RSE and SNR. As expected,
for large SNRs, e.g. SNR = 50 dB, d(RSE) = �0:5
for RSE between 5 and 7. For SNRs of interest, be-
tween 15 dB and 25 dB, the optimum value of RSE

is between 5.6 and 5.2. Hence, the optimum value of
RSE for 8-PAM is neither the Sato value of 5.25 or the
square-root of the Godard value of 6.08, but some value
depending on the SNR. The results obtained above can
be carried over to any level PAM signal by using the
appropriate signal set and probability distribution in
the summation in equations (10) to (13).

4. SIMULATION RESULTS

Simulation result were carried out with a 8-PAM signal
through the channel impulse response shown in Figure
2. The equalizer parameters used in the simulation
were: Lf = 20, df = 14 and Lb = 34. The input

SNR was 20 dB. Figure 3 shows the average MSE at
the end of each \segment" where a segment is de�ned
to be a block of 832 8-PAM symbols, averaged over
100 di�erent simulation runs. For the Godard equal-
izer, � was 10�7 and for the sign-error equalizer � was
5x10�6. The sign-error algorithm was run with 3 dif-
ferent values of RSE: 5.25, 6.08 and 5.57, which are the
values for the Sato error, square-root of the Godard er-
ror and the value of RSE from Table 1 for an output
SNR of approximately 16 dB, respectively. It is clear
that the sign-error algorithm delivers the lowest MSE
with RSE = 5:57 as compared to the other 2 values.
Also, for the same �nal MSE, the sign-error algorithm
converges slower as compared to the Godard algorithm.
However, one can use a larger � during the initial phase
to speed convergence. In Figure 4, the sign-error al-
gorithm was run with RSE = 5:57 and � = 2x10�5

for the �rst 100 segments and � = 5x10�6 thereafter.
This step-size selection makes the sign-error algorithm
very similar in convergence as compared to the Godard
equalizer. Other step-size selection schemes mentioned
in [3] could also be used to speed up convergence.

Since the choice of RSE depends on the SNR at the
output of the equalizer, a practical scheme has to be de-
vised at the receiver in order to pick the optimum RSE.
One such scheme could be that Table 1 is precomputed
and stored in memory for a given constellation. The
equalizer starts with a default value which is chosen by
some knowledge of the expected SNR range, and then
updated by measuring SNR at the equalizer output and
looking up the corresponding value of RSE from Table
1.

5. CONCLUSIONS

We have analyzed a sign-error cost function for the
blind equalization of real signals with a new de�nition
of convergence for low to medium SNR conditions. This
cost function was shown to perform very favorably as
compared to the Godard cost function, but with greatly
reduced complexity. The same derivation for the op-
timum value of RSE (equations (8) to (13)) can be
carried out for complex signals as well.
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Figure 1: Derivative at convergence, d(RSE), Vs. RSE
for di�erent values of SNR.
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Figure 2: Impulse response of the simulated channel.
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Figure 3: Convergence characteristics for the Godard
and sign-error algorithms. For Godard's algorithm,
� = 10�7. For the sign-error algorithms, � = 5x10�6.
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Figure 4: Improved convergence for the sign-error al-
gorithm. � = 2x10�5 for the �rst 100 segments,
and � = 5x10�6 thereafter. For Godard's algorithm,
� = 10�7 throughout.


