
A BLOCK-ITERATIVE QUADRATIC SIGNAL RECOVERY ALGORITHM

Patrick L. Combettes

Department of Electrical Engineering

City College and Graduate School

City University of New York

New York, NY 10031, USA

ABSTRACT

We propose a block-iterative parallel decomposition
method to solve quadratic signal recovery problems un-
der convex constraints. The idea of the method is to
disintegrate the original multi-constraint problem into
a sequence of simple quadratic minimizations over the
intersection of two half-spaces constructed by lineariz-
ing blocks of constraints. The implementation of the
algorithm is quite exible thanks to its block-parallel
structure. In addition a wide range of complex con-
straints can be incorporated since the method does not
require exact constraint enforcement at each step but
merely approximate enforcement via linearization. An
application to deconvolution is demonstrated.

1. INTRODUCTION

The convex set theoretic signal recovery problem is to
produce an estimate of an original signal in the inter-
section of a family (Si)1�i�m of closed and convex sets
in a real Hilbert space � [4], [12], [13]. The recovery
problem therefore reads

Find a? 2 S =
m\
i=1

Si: (1)

This convex feasibility framework has been applied to
numerous signal recovery problems (see, e.g., [4] and
the references therein). Each set Si represents the class
of signals that satisfy a certain constraint and is typi-
cally given as

Si = fa 2 � j gi(a) � 0g; (2)

where gi : �! R is a continuous convex function [5].
In some instances, it is more appropriate to select

the feasible signal that is closest to a reference signal
r as opposed to any signal in S, e.g., [2], [3], [9]. The
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recovery problem is then to �nd the signal a� 2 S that
least deviates from r relative to the underlying norm,
i.e., to solve the quadratic program8<

:
min 1

2ka� rk2

subject to
a 2 S =

Tm

i=1 Si:
(3)

In other words, one seeks the projection a� of r onto
the feasibility set S (the minimum norm solution for
r = 0).

In the signal recovery and mathematical program-
ming literatures, several methods can be found that
solve (3) under certain conditions. From a numerical
point of view, however, these methods su�er from sev-
eral limitations and they can seldom be implemented
e�ciently. In this paper we propose a new constrained
quadratic minimization method that alleviates these
limitations and is particularly well suited for large-scale
signal recovery applications in the presence of complex
convex constraints. The method is block-parallel and it
can therefore fully take advantage of parallel processing
architectures. Its computational e�ciency is further
enhanced by the fact that it does not require exact en-
forcement of the constraints but merely approximate
enforcement by means of linearizations.

The remainder of the paper is divided in three
sections. In Section 2, we review existing quadratic
minimization methods and discuss their limitations in
the context of signal recovery applications. The new
method is presented in Section 3. Finally, a numerical
application to signal deconvolution in spectroscopy is
demonstrated in Section 4.

2. REVIEW OF EXISTING METHODS

Several algorithms have been proposed in the sig-
nal/image recovery literature, that can solve (3) in spe-
ci�c cases. Thus, the algorithm of [10] is restricted to a
nonnegativity constraint while the approach of [7] pro-
vides a �nite parametrization for linear data models



that it is limited in practice to simple constraints, as
projections onto the feasibility set are required. The
method of [9] is restricted to m = 2 sets and is rela-
tively involved. In the quadratic programming litera-
ture, algorithms have been proposed for certain types
of constraint sets such as half-spaces, cones, a�ne sub-
spaces, hyperslabs (see [3] and references therein).

A popular algorithm for solving (3) under our gen-
eral assumptions is that given in [1]. This so-called
Dykstra-projection method proceeds via the cyclic it-
eration scheme8><

>:
a0 = r
and

(8n 2 N) an+1 =
_

Pn (modulom)+1(an):

(4)

Here
_

P i is a \recti�ed projection" onto Si, i.e.,
_

P i(an) = Pi(an + bi;n), where bi;n is the outward nor-
mal of Si at the previous projection onto Si, obtainedm
iterations earlier, and Pi the projection operator onto
Si.

1 The parallel version8>>><
>>>:

a0 = r

and

(8n 2 N) an+1 =
1

m

mX
i=1

_

P i(an)
(5)

was introduced in [8]. An alternative parallel method,
proposed in [4], is described by the recursion8>>><
>>>:

a0 = r

and

(8n 2 N) an+1 =
1

n+ 1
a0 +

n

(n+ 1)m

mX
i=1

Pi(an)

(6)

(a serial version is also available [4]). Despite their con-
ceptual generality, these methods face several obstacles
in actual signal recovery applications.

1. Signal recovery problems are often large-scale prob-
lems (e.g., image or three-dimensional applica-
tions). It is therefore of utmost importance that
the algorithms be implementable in a exible man-
ner on a parallel architecture. Algorithm (4) is se-
rial and therefore ill-suited for parallel processing.
Algorithms (5) and (6) are fully parallel as they
require that all the sets be activated at each iter-
ation. As a result, if the number of sets exceeds
the number of concurrent processors available, the
implementation will not be optimal.

1The projection of a 2 � onto Si is the unique point Pi(a) 2
Si such that kPi(a) � ak = infb2Si kb� ak [4].

2. Algorithms (4) and (5) require the storage of aux-
iliary vectors as one outer normal per set must be
carried from one iteration to the next. This com-
plicates the implementation of these algorithms in
terms of memory allocation and management.

3. Algorithms (4), (5), and (6) all require that the pro-
jection operators (Pi)1�i�m onto the sets be known.
As discussed in [4] and [5], there are many useful
constraints for which projections are not available
in closed-form and must be computed iteratively as
costly subproblems.

4. In numerical tests, algorithms (4), (5), and (6) have
been observed to converge slowly.

3. THE PROPOSED ALGORITHM

Principle. Starting with a0 = r, the proposed method
proceeds as follows. At iteration n, one selects a block
of indices In � f1; : : : ;mg and computes approximate

projections (pi;n)i2In of the current iterate an onto the
sets (Si)i2In . Given (2), these approximate projec-
tions are e�ciently computed as subgradient projec-
tions, i.e., [5]

pi;n =

8<
: an �

gi(an)

kti;nk2
ti;n if an =2 Si

an otherwise,
(7)

where ti;n is a subgradient (the gradient if gi is di�er-
entiable) of gi at an.

2 One then forms a relaxed convex
combination an+ 1

2

of these subgradient projections and
constructs the two half-spaces�

H1
n = fa 2 � j ha� an+ 1

2

j an � an+ 1

2

i � 0g

H2
n = fa 2 � j ha� an j a0 � ani � 0g:

(8)

The set H1
n \ H2

n serves as an outer approximation to
the feasibility set S and the new iterate an+1 is ob-
tained as the projection of a0 onto H1

n \H2
n. We now

present the detailed algorithm (the relaxed average of
subgradient projections an+ 1

2

is computed at step S2

and the projection of a0 onto H1
n \H2

n at step S3.)
Algorithm.3 A sequence (an)n�0 is constructed as

follows.

S0. Fix (�; ") 2 ]0; 1[ 2 and set a0 = r and n = 0.

S1. Choose a block of indices In � f1; : : : ;mg.

2The reader is referred to [5] for a tutorial overview of subgra-
dients and signal recovery examples. In that paper, subgradient
projections were used to solve (1).

3One recovers a method proposed in [11] as a special case by
taking exact projections as opposed to approximate ones, letting
In = f1; : : : ;mg, and wi;n = 1=m.



S2. Set

an+ 1

2

= an + �n

 X
i2In

wi;npi;n � an

!
; (9)

where

(A) For every i 2 In, pi;n is as in (7).

(B) (wi;n)i2In � ]�; 1] and
P

i2In
wi;n = 1.

(C) "Ln � �n � Ln where

Ln=

8>>>>>><
>>>>>>:

X
i2In

wi;nkpi;n�ank
2


X
i2In

wi;npi;n�an


2 if an =2

\
i2In

Si;n

1 else:

S3. Set �n = ha0�an j an�an+ 1

2

i, �n = ka0�ank
2,

�n = kan�an+ 1

2

k2, �n = �n�n��
2
n, and

an+1=

8>>>>>>>><
>>>>>>>>:

an+ 1

2

if �n = 0 and �n � 0;

a0 + (1 + �n=�n)(an+ 1

2

� an)

if �n > 0 and �n�n � �n;

an +
�n
�n

(�n(a0�an)��n(an�an+ 1

2

))

if �n > 0 and �n�n < �n:

S4. Set n = n+ 1 and go to S1.

Convergence. [6] Suppose that the two conditions
below are ful�lled:

(i) The control sequence (In)n�0 is such that every
set is activated at least once within any M con-
secutive iterations: there exists a positive integer
M such that

(8n 2 N) f1; : : : ;mg =

M�1[
k=0

In+k: (10)

(ii) The subgradients of the functions (gi)1�i�m are
uniformly bounded on bounded sets: for every
 2 ]0;+1[ there exists � 2 ]0;+1[ such that
the condition kak �  implies that for every
i 2 f1; : : : ;mg and every subgradient t of gi at
a we have ktk � �.4

Then every sequence (an)n�0 generated by the algo-
rithm converges strongly to the solution a? of (3).

Comments. The proposed algorithm displays
three salient features that make it very attractive in
comparison with existing schemes.

4This standard condition is automatically satis�ed in �nite
dimensional spaces [5].

1. It is block-iterative and parallel: only the con-
straints with indices in In (not all ) are activated
simultaneously at iteration n. The control rule (10)
o�ers in this respect great exibility in the selection
of the constraints.

2. It requires only subgradient projections as opposed
to exact ones. Analytically complex constraints can
therefore be incorporated in the recovery algorithm
and processed at low cost.

3. Initial numerical experiments indicate that it dis-
plays a fast speed of convergence.

4. NUMERICAL EXAMPLE

We consider a spectroscopy problem described in [12],
where it was solved as a feasibility problem, i.e., (1).

The 64-point original emission spectrum h shown
in Fig. 1(A) has been degraded by the limited resolu-
tion of the spectrometer and recording noise u. The
recorded signal x = Lh + u (the matrix L models
the blurring induced by the spectrometer) is shown in
Fig. 1(B). The feasibility set S is de�ned by the follow-
ing constraints (see [12] for details): nonnegativity of
h, a residual/noise variance matching constraint, and
residual/noise amplitude matching constraints.

We seek the feasible signal a� that least deviates
from the recorded signal, i.e., r = x in (3). The so-
lution a� to this problem is shown in Fig. 1(C). Next,
we show the restorations obtained after 30 iterations of
three parallel algorithms: algorithm (5) in Fig. 1(D);
algorithm (6) in Fig. 1(E); the proposed algorithm in
Fig. 1(F). This experiment shows that proposed algo-
rithm converges much faster than (5) and (6) in terms
of iteration counts. Furthermore, (5) and (6) must use
exact projections. In the case of the variance matching
constraint set, which takes the form

S2 = fa 2 R64 j kx� Lak2 � �g; (11)

it was shown in [12] that the projection P2(an) is not
known in closed form and must be calculated via a
costly multi-step procedure. By contrast, with the pro-
posed algorithm, it can be approximated by the sub-
gradient projection given by (7) for an =2 S2 as

p2;n = an +
krnk

2 � �

2 k tLrnk2
tLrn (12)

where tL is the transpose of L and rn = x�Lan [5]. Let
us stress that evaluating p2;n is a one-step procedure
which is about 15 times cheaper than the multi-step
procedure proposed in [12] to evaluate P2(an). This
further reduces the computational load of the proposed
algorithm vis-�a-vis (5) and (6).
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Figure 1: Constrained quadratic recovery of a spectrogram.
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