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ABSTRACT
A new method for suppressing transients in time-varying recur-
sive filters is proposed. The technique is based on modifying the
state variables when the filter coefficients are changed so that the
filter enters a new state smoothly without transient attacks, as
originally proposed by Zetterberg and Zhang. In this contribution
we modify the Zetterberg–Zhang algorithm to render it feasible
for efficient implementation. We explain how to determine an
optimal transient suppresser to cancel the transients down to a
desired level at the minimum complexity of implementation. The
application of the method to time-varying all-pole and direct-
form II filter structures is studied. The algorithm may be gener-
alized for any recursive filter structure. The transient suppression
technique finds applications in audio signal processing where the
characteristics of a recursive filter needs to be changed in real
time, such as in music synthesis, auralization, and equalization.

1. INTRODUCTION

Due to the recursive nature of IIR filters, abrupt changes in filter
coefficients cause disturbances to values of internal state vari-
ables and thus result in transients at the filter output. These tran-
sients may cause serious trouble for practical applications, such
as clicks in audio signals, and they are a critical problem in the
implementation of time-varying recursive filters. Many different
approaches have been proposed for suppressing transients in
time-varying recursive filters: a cross-fading method [1], [7],
gradual variation of coefficients using interpolation [2], interme-
diate coefficient matrix [3], and updating of the state vector [8].

The most general approach to transient suppression is the state-
variable update technique introduced by Zetterberg and Zhang
[8]. They state that every change in filter coefficients should be
accompanied by an appropriate change in the internal state vari-
ables. The Zetterberg–Zhang (ZZ) method can completely elimi-
nate the transients but it does require that all the past input sam-
ples are known. This makes the approach impractical as such but
provides a fruitful starting point for more efficient approximate
algorithms. In this paper we build on the ZZ method.

The motivation for our work has been to find a practical way to
update the state variables of a recursive filter in real time when
the filter coefficients are changed abruptly. We present a solution
for transient suppression that gives an acceptable performance at

the minimum implementation complexity. In this paper we show
how the new technique is used with the all-pole filter structure.
The transient cancellation method may be generalized for any IIR
filter, including cascade and parallel structures.

2. TIME-VARYING RECURSIVE FILTERS

2.1 Output-Switching Method

Let us consider a recursive Nth-order filter with transfer function

H z
B z

A z

b b z b z

a z a z
N

N

N
N

( )
( )

( )
= = + + +

+ + +

− −

− −
0 1

1

1
11

�

�

(1)

where bk and ak are its numerator and denominator coefficients,
respectively (k = 0, 1, ..., N). Assuming a causal implementation,
the input-output relation of this filter may be expressed as
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where x(n) and y(n) are the input and output signal of the filter,
respectively, and they are assumed to be stationary signals.

In order to understand what the change of the filter characteris-
tics means for the filter output, we consider a single change of
the coefficient set at time index n = nc. Ideally, the filter should
instantly reach its steady state and there would not be any distur-
bances in the output signal after the change. This can be achieved
by running two filters, H1(z) and H2(z), in parallel as shown in
Fig. 1. The output signals of these two filters are
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where i = 1, 2 and the asterisk denotes discrete-time convolution.
The output is switched at time index n = nc > 0 and the output of
the system can be expressed as
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We call this the output-switching method for implementing time-
varying recursive filtering, and it represents the ideal case where
the change in filter coefficients does not introduce any transients.

In a practical situation where multiple coefficient changes occur,
realization of a time-varying filter using the output-switching



method of Fig. 1 grows increasingly complex. For example, if it
is needed to switch between one hundred different filter coeffi-
cient sets in a given application, the transient-free implementa-
tion requires 100 filters running in parallel. This also implies that
the filter coefficient sets must be known beforehand.

2.2 Transient versus Discontinuity

The output signal of a time-varying recursive filter whose coeffi-
cients are changed at time n = nc may be expressed as
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where y1(n) and y2(n) are the steady-state responses of the filter
before and after, respectively, the change in the coefficient set,
and yt(n) is the transient signal. It is defined as the difference
between the actual (5) and ideal output signals (4), that is

y n y n y n n nt id cfor ( ) ( ) ( )= − ≥ (6)

Although the output-switching method is ideal in the sense that
no transient will occur, there will be a discontinuity in output
signal yid(n) at time nc. The interpretation of the discontinuity is
that the values of output signal yid(n) at time instants nc – 1 and
nc are results of different filtering processes. If the discontinuity
is a problem, one should introduce smaller changes in the filter
coefficients [1], [2] or crossfade the outputs of the two filters
[7]—the transient cancellation method discussed subsequently in
this paper will not help that problem by itself.

3. STATE-VARIABLE FORMULATION

3.1 Transient in the State Variables

A recursive filter can be expressed in state-variable form as

v Fv q( ) ( ) ( )n n x n+ = +1 (7a)

y n n g x n( ) ( ) ( )= +g vT
0 (7b)

The dimensions and values of the matrices and vectors used in
(7a) and (7b) depend on the realization structure of the filter.
According to (7a), the state-variable vector v(n) can be expressed
as a function of the input signal x(n) and coefficient matrices
when the coefficients have been changed at time nc [8]
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where v(0) is the initial state of the filter, and F1 and F2 are the

coefficient matrices before and after the coefficient change, re-
spectively. In the following we assume that nc >> 0  so that the
decaying initial transient F v1 0n ( )  can be neglected. At the time
of the change ( )n n= c , the state vector can be expressed as
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and by substituting (9) into (8b) we obtain the state vector after
the coefficients have been changed (that is, n n> c )
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This form can be elaborated in the following way to explicitly
show the cause of the transient in the state vector
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The first term in (11) represents the transient in the state vector
and the second term is the steady-state response of the filter to
the input after the parameters have changed.

3.2 Zetterberg–Zhang Method

As stated by Zetterberg and Zhang [8], one way to completely
eliminate the transient caused by the change of coefficients is to
subtract term ∆v( )nc  from the state vector at time n = nc:
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This is the Zetterberg–Zhang (ZZ) method for the elimination of
transients. The ZZ method implements the output-switching
method introduced in Section 2. This is seen to be true since in
(13) the subtraction of the correction term from the state vector
effectively switches the state vector of coefficient set 1 to that of
set 2, exactly as suggested by (4) where the state vectors of filters
H1(z) and H2(z) are updated all the time. The drawbacks of the
ZZ method are thus those of the output-switching method. Next
we propose modifications to this method and introduce an
efficient suppression method that does not have these problems.

4. THE NEW SUPPRESSION METHOD

4.1 Modifications to the ZZ Method

Equation (13) suggests that the ZZ method of transient suppres-
sion can equivalently be implemented by replacing the state
vector (at the time of change from coefficient set 1 to 2) with the
following transient cancellation vector (TCV)

x n( ) y n( )
n n= c

H z1( )

H z2( )

y n1( )

y n2( )

Figure 1. The output-switching method.
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which simply contains the steady-state vector obtained when the
coefficient matrix F2  is used from the beginning. As discussed
above, it is impractical to compute the state vector for all filter
coefficient sets all the time. Instead, we suggest approximating
transient cancellation vector v tc  with a truncated sum as [4], [5]
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where parameter Na is called the advance time. It expresses the
number of samples of the input signal that are used for comput-
ing the state vector in advance of the coefficient change. If
approximation �vtc  is updated recursively (at the same sample
rate) in parallel with the filtering operation, advance time Na also
represents the time lag (in samples) that is required before the
estimate �vtc  is available. The main advantage of this technique
is that now the computation of the transient cancellation vector
only takes finite time and need not be updated all the time in
parallel with the filtering operation.

The use of a finite number of samples for computing �vtc  is mo-
tivated by the fact that the impulse response of a stable recursive
filter decays exponentially and can thus be regarded as finite-
length. This implies that any input sample of the filter contributes
to the state vector for a finite time. Thus, the knowledge of the
effective length of the impulse response from the input to the
state vector helps to estimate how many past input samples need
to be taken into account in updating the transient cancellation
vector (i.e., how many values of this impulse response are
observably nonzero for the application). This principle may be
applied to all recursive discrete-time filter structures.

4.2 Application to All-Pole and DF II Structures

Let us consider the application of the transient suppression
method to all-pole and direct-form (DF) II recursive structures. A
key observation is to understand how the contents of the state
vector of these filters are produced. The state vector contains the
N latest output samples, that is
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On the other hand, the output signal y(n) is the convolution of
the impulse response of the filter with the input signal (see (3)).
Thus, in the case of all-pole and DF II structures, it is necessary
to determine the effective length of the impulse response of the
filter, say NP, to know how many past input samples effectively
contribute to the first value of the state vector v n y n1 1( ) ( )= − .
After N sample cycles, this value disappears from the state vec-
tor. Thus, the advance time may then be set equal to

N N NPa = + (17)

where NP and N are the effective length of the impulse response
and the order of the filter, respectively. This choice of Na
ensures that the updated state vector suffers sufficiently little
from the truncation of the input signal in (15), according to the

same criterion that was used to determine NP. In practice, it is
desirable to choose Na to be the smallest integer that yields suffi-
cient suppression, since this minimizes the implementation costs
of the transient cancellation algorithm.

4.3 Implementation of the New Algorithm

The transient elimination algorithm is implemented as depicted
in Fig. 2. Initially, the IIR filter H1(z)—called the signal filter—
processes the input signal (Fig. 2(a)). Na samples before the
coefficient change, the input signal x(n) is fed into two systems,
filter H1(z) and the transient eliminator that has the new transfer
function H2(z) (Fig. 2(b)). At time n = nc, the coefficients of the
signal filter are updated and the state vector (TCV) is copied
from the transient eliminator to the signal filter’s state as shown
in Fig. 2(c). The transient eliminator is now turned off. Finally,
the new coefficient set is used for filtering the input signal (Fig.
2(d)). As a result, the transient will be sufficiently suppressed if
the value of parameter Na is large enough.

It is seen that for a single coefficient change, the algorithm
requires that two filters run in parallel for Na sample intervals.
Thus, when multiple changes are required and it is fast enough to
update filter coefficients at every Nath sample interval, there is no
need to run more than two filters in parallel at any time.

A major advantage of all-pole and DF II structures is that only
the feedback coefficients affect the state vector. In the case of the
DF II structure this implies that the suppression scheme only
requires implementation of 1.5 filters at any time: the pole-zero
signal filter and an all-pole transient eliminator.

5. EXAMPLE

We present an example that illustrates the transient suppression
method. We filter a low-frequency sine wave (0.0454 times the
sampling frequency fs) with a second-order allpass filter (direct-
form II) that approximates a constant group delay. Initially, the
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H z1( ) nc
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Figure 2. The different phases of the new transient sup-
pression scheme for a single change of filter coefficients at
time index n = nc.



filter coefficients are a1 = 0 and a2 = 0 (corresponding to a con-
stant delay of 2 samples) and at time index 30 they are changed
to values a1 = 0.4 and a2 = –0.028571, which gives a group delay
of 1.5 samples at low frequencies. We present the output and
transient signals of the filter in two cases: without transient can-
cellation and when the cancellation method is used with
parameter value Na = 4. These output signals are compared with
the “ideal” output signal (dashed line in Fig. 3) which has been
computed using the output-switching method (see Fig. 1) by
running two filters in parallel and changing the output at time n =
30. The transient signal shown in the lower part of the figures in
both cases is the difference of the output signals of the time-
varying and ideal filter. Obviously, in Fig. 3(b) (Na = 4) the
maximum amplitude of the transient has been suppressed with
respect to Fig. 3(a). More suppression can be achieved by using a
larger value for Na. Other examples on the use of the algorithm
are available in [4], [5], and [6].

6. CONCLUSIONS

A novel and efficient transient elimination technique for time-
varying recursive filters was introduced. The technique updates
the state variables at the time of the filter coefficient change. A
finite number of input samples (described by the advance time
parameter) is used for computing new values for the state vector.
The advance time of the transient eliminator should be deter-
mined so that it will result in the required transient suppression at
minimum implementation costs. The proposed transient elimina-
tion method can be used with all recursive digital filters. How-
ever, it can be most efficiently implemented when used with filter
structures whose state contains the delayed output sample values,
as in the case of all-pole or direct form II filter structures. Then
the transient eliminator is an all-pole filter.

The new transient cancellation method is useful especially in
real-time audio signal processing where the properties of recur-
sive filters need to be changed while filtering a signal. Examples
of such applications are music synthesis with physical models,
auralization, and equalization.
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Figure 3. The output signal waveform of a second-order
allpass filter (DF II structure) when the coefficients are
changed at time index n = 30 (a) with no transient elimi-
nation and (b) with the proposed transient suppresser
with Na = 4. The difference (transient) of the actual and
ideal (dashed line) output signals is also displayed.


