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ABSTRACT

In this paper we study the problem of tracking a random
walk observed with noise when the variance of the walk in-
crement is unknown. We describe a sequence of estimators
of the random walk and we design an algorithm to choose
the best estimator among all the sequence. We give also a
bound for the mean square error of this estimator. Finally
some simulations are presented and we compare our algo-
rithm with the Kalman filter when the variance of the walk
increment is estimated.

1. INTRODUCTION

Tracking the possibly time-varying dynamic of a stochastic
system is a major objective in signal processing and system
identification. A lot of work about this subject has given nu-
merous articles. Nevertheless, we can cite [6] for a survey in
system identification, [1] about the design of adaptive algo-
rithms, [3] about asymptotical study and [5] about stability
of algorithms.

In this paper, we want to track ad-dimensional random
walk with noisy observations of this walk

�t+1 = �t + 
wt (1)

yt = �t + et (2)

where
 is an scalar,(wt) and(et) are stationary white noise
processes, mutually independent, with covariance matrices
respectively equal toI and�2eI . The parameter
 is as-
sumed to be unknown.

This model is also well suited when the observations are
a noisy linear regression

yt = 'Tt �t + et:

In this case, we add a step of recursive estimation with a
large gain�

zt = zt�1 + �(yt � 'Tt zt�1)'t

and then we consider that(zt) are the noisy observations in
the model (1)-(2).

Under Gaussian assumptions on noises, the solution is
obtained from the Kalman filter (See, e.g., [4]). But we
must note that the Kalman filter requires the knowledge of
the covariance matrices
2I and�2eI .

As the parameter
 is unknown, we can’t apply the Kalman
filter. A natural idea is then to estimate
 with an online al-
gorithm which minimizesE(yt � �̂t)

2 (see section 4.4 of
[2]).

We design in this paper a tracking algorithm for the
model (1)-(2) when the parameter
 is unknown and is not
estimated.

2. BIAS VS NOISE

At each timet, we consider the sequence of estimators de-
fined on a window of lengthmi = 2im0; (m0 � 1) by

�̂
(i)
t =

1

mi

tX

k=t�mi+1

yk; i = 0; � � � ; [log2
t

m0
]: (3)

Then we want to find the estimator which minimizes the
Mean Square Error

E


�̂(i)t � �t



2
2

where


x



2

is the Euclidean norm ofx. That is to say we
want to find the length of the optimal window. Let us remark
that the estimators (3) can be written as
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t + �

(i)
t

where
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As (wt) and(et) are mutually independent,(�(i)t ) and(�(i)t )
are also mutually independent for alli = 0; � � � ; [log2 t

m0
].

Then
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:

As (et) is assumed to be a white noise with covariance ma-
trix �2eI , we have for the first term,

�2i
4
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2
=

�2ed

mi
:

For the second term, we note from (1) that

�t = �k + 


t�k�1X

j=0

wt�j ;

hence
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mi
:

As the mappingi ! mi is increasing andmi � 1 for all
i = 0; � � � ; [log2 t

m0
] , �2i is a decreasing function ofmi

and b2i an increasing function. We call them respectively
the “noise” and the “bias” of the estimator.

Thus the optimal window is the window which balances
�i andbi. We obtain that the optimal lengthm� verifies the
equivalence

m� � max(1;
�e



): (4)

In other words, if we had no noise on observations (i.e.�e =
0), the optimal estimator would be the current observation.
On the contrary, if the parameter�t is time invariant (i.e.

 = 0 and�t = �), the optimal window would be an infinite
window.

As the parameter
 is unknown, a direct and simple
computation ofm� from (4) is not available. We describe
in the next section an algorithm which computes this opti-
mal length without a priori knowledge on the value of the
parameter
.

3. THE ALGORITHM

Consider the confidence region of�̂(r)t with area equal to
2K�r andK a constant suitably chosen. We explain now
the heuristic of the algorithm. We remind that the variance
of the the estimator is decreasing, and the bias increasing,
with the length of the window.

i = 1; imax = [log2
t

m0
]

r = 0

r = r + 1

�̂t = �̂
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t
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Figure 1: Computation of the estimator�̂t. The figure must
be read from top to bottom. Diamond boxes represent a
boolean test with one input and two outputs (True or False).
Circles represent affectation.

An estimator̂�(r)t , defined on a small window (that is to
sayr small), has a small “bias”. Hence its region is expected
to contain the parameter�t.

On the other hand, if̂�(r)t is defined on a large window,
its confidence region will be small but the bias will be large
and maybe too large. Then the confidence region may not
contain�t.

Having taken this remarks into consideration, if the es-
timators�̂(r)t , from 0 toi� 1, have been accepted then�̂(i)t
will be accepted if it belongs to all the confidence regions
from 0 toi� 1. Otherwise�̂(i)t will be rejected. This algo-
rithm is represented in the figure 1.



4. A BOUND FOR THE MEAN SQUARE ERROR

If u = (u1; � � � ; ud) is ad-dimensional vector, we note the
infinite norm ofu,

kuk1 = max
1�i�d

juij:

We make the following assumptions

� �0 � b0,

� P
�ketk1 � �

� � P
�jN (0; �2e )j � �

�
,

� P
�kwtk1 � �

� � P
�jN (0; 1)j � �

�
,

� ketk1 andkwtk1 have symmetric density probabil-
ity function.

We define the integeri� by

i� = maxf0 � i � imax : bi � �ig
Remark: As the�i’s are decreasing and thebi’s are increas-
ing, the first assumption is necessary for the definition ofi�,
but it is not too restrictive in practice. A simple calculus
gives that the parameter
 must verify the condition


2 � 6�2e
(2m0 � 1)(4m0 � 1)

:

If this condition is not verified, it means that the variance
of (et) is smaller than the variance of(wt). In this case,
the noise can be omitted from the model what simplifies the
tracking problem.

Under these assumptions we can prove the
Theorem

There exists a constantC such that
�
Ek�̂t � �tk22

�1=2 � �
Ek�̂(i�)t � �tk22

�1=2
+Kd�i�

+ C�0
�
Kde�

K
2
d
2

16 i�
�1=2

Sketch of the proof:
We noteCj the cube of length2K�j , centered in̂�(j)t ,

and we noteIi = \ij=1Cj the intersection of the cubes from
0 to i.

Hence�̂t = �̂
({̂)
t where

{̂ = maxfi : �̂
(i)
t 2 Iig:

Then we divide the mean square error into two parts

Ek�̂t � �tk22 = E1{̂�i�k�̂t � �tk22 +E1{̂<i�k�̂t � �tk22
We remark that for anyd-dimensional vectoru

kuk21 � kuk22 � dkuk21:

To bound the first term we apply the

Lemma 1
If {̂ � i� then k�̂t � �tk2 � Kd�i� + k�̂(i�)t � �tk2

To prove this lemma, we just have to remark thatI{̂ � Ii�

and then̂�t 2 Ci� . Hence we obtain that

�
E1{̂>i�k�̂t � �tk22

�1=2 � Kd�i� +
�
Ek�̂(i�)t � �tk22

�1=2
:

(5)
For the second term, we use the following lemmas

Lemma 2 If {̂ < i� then supi�i� k�(i)t + �
(i)
t k1 > K

2 �i,

The core of the prove is that there exists a integerj such that
�̂
(i)
t does not belong toCj .

Lemma 3
If (et) and (wt) are two sequences, mutually indepen-

dent, of independent random vectors, such that

� ketk1 andkwtk1 have symmetric density probabil-
ity function and for all� � 0

� P
�kekk1 � �e�

� � P
�jN j � �

�
,

� P
�kwkk1 � �

� � P
�jN j � �

�

then for alli � 0

P
�k�(i)t + �

(i)
t k1 � �

� � P
�jN j �

p
dp
2�i

�
�

withN � N (0; 1).

With the independence of(et) and(wt), we prove that

P
�k�(i)t + �

(i)
t k1 � �

� � P
�jN j �

p
dp

b2i + �2i
�
�
:

To conclude, we just remind that for alli � i�, b2i < �2i .
With these lemmas we can find a constant C such that

�
E1{̂�i�k�̂t � �tk22

�1=2 � C�0
�
Kde�

K
2
d
2

16 i�
�1=2

: (6)

By combining (5) and (6), we finish the prove of the theo-
rem.

5. SIMULATIONS

In the simulations,(wt) and (et) are 1-dimensional cen-
tered Gaussian white noise. The random walk is tracked
on a sample of length 5000. In both figures, the dashed line
is the tracking parameter. The last simulation, figure 5, is
a comparison between our algorithm and the Kalman filter
when
 is estimated witĥ
 6= 
.
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Figure 2:
 = 0; �e = 16; K =
p

log(4imax2imax). The
first plot is the random walk in the observations. The second
plot is the random walk and the tracking parameter.
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Figure 3: 
 = 0:7; �e = 16; K =
p

log(4imax2imax).
The first plot is the random walk in noise. The second plot
is the random walk. The third is the result of the Kalman
filter with 
 is estimated bŷ
 = 2. The fourth plot is the
random walk and our tracking parameter.

6. CONCLUSION

In this paper we have designed an algorithm for tracking a
d-dimensional random walk with unknown drift. The esti-
mator is the mean of the noisy observations on a window of
some length. Our algorithm approximate the optimal win-
dow which minimizes the mean square error. We have given
also a bound for the mean square error which is close to the
optimal bound. We have shown that our algorithm can be
an alternative to the Kalman filter when
 is unknown.
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