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ABSTRACT

An interpolation problem that is important in viral x-ray
crystallography is considered. The problem requires new
methods because (1) the function is known to have icosahe-
dral symmetry, (2) the data is corrupted by experimental
errors and therefore lacks the symmetry, (3) the problem
is 3D, (4) the measurements are irregularly spaced, and
(5) the number of measurements is large (10**4). A least-
squares approach is taken using two sets of basis functions:
the functions implied by a minimum-energy band-limited
exact interpolation problem and a complete orthonormal set
of band-limited functions. A numerical example on Cowpea
Mosaic Virus is described.

1. INTRODUCTION

Viruses, like molecules, can sometimes be crystallized and
their 3D structure can then be determined by x-ray crys-
tallography. This paper considers an interpolation problem
that commonly arises during structure determination for
the so-called spherical viruses. Spherical viruses are viruses
with a shell of protein (the so-called \capsid") surrounding
an inner core of nucleic acid. The capsid is \crystalline"
in the sense that it is constructed from many repetitions
of the same polypeptides and the entire capsid is invariant
under the rotational symmetries of the icosahedron. The
icosahedron, as shown in Figure 1, is constructed from 20
equilateral triangles and has 60 rotational symmetries: a
5-fold axis where 5 triangles meet, a 3-fold axis through the
center of each triangle, and a 2-fold axis at the midpoint of
each edge between two triangles. A typical outer radius of
the capsid is in the range 102{103�A.

For experimental reasons, the three-dimensional crystal
x-ray di�raction data sets used to re�ne a virus structure
are incomplete. However, because of the icosahedral sym-
metry of the viral particle in real space, the data set in recip-
rocal space also displays icosahedral symmetry. This redun-
dancy, which can be up to 60-fold, should allow the struc-
ture to be solved even though the data set is incomplete
(e.g., only 20% of the data was measured). However, in
order to use standard re�nement algorithms and programs
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Figure 1: An Icosahedron. One symmetry axis of each
type|2-, 3-, and 5-fold|is shown.

(e.g., the electron density modi�cation algorithm [9]), an
essentially complete data set is required. Therefore, based
on the 60-fold redundancy, the incomplete data set is in-
terpolated to generate a complete data set. However, the
current methods do not exploit the icosahedral symmetry
of the reciprocal-space data and are therefore inaccurate.
In this paper we describe more sophisticated interpolation
algorithms based on a least-squares point of view which ex-
ploit the icosahedral symmetry.

2. CRYSTALLOGRAPHY AND INTERPOLATION

We �rst recall the basic framework. For notational simplic-
ity, we consider only the simplest case, which is a cubic P
Bravais lattice in which the unit cell measures a units on a
side. Let �u(~x), with Fourier transform Pu(~k), be the elec-
tron density within a unit cell of the crystal. By de�nition,
�u(~x) is zero outside the unit cell. Let ~n = (n1; n2; n3) be a
vector in which each component takes only integer values.
The electron density in the entire crystal, denoted by �(~x),
can then be written �(~x) =

P
~n
�u(~x� ~na) and has Fourier

transform
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(�(x) is the Dirac delta function). Equivalently, since �(~x)
is periodic, one can use Fourier series:
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and �(~x) =
P
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P~n exp(i(2�=a)~n�~x). Let fu(~x) =

R
�u(~�)�
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~x)d~�, with Fourier transform Fu(~k) = jPu(~k)j2, be the auto-
correlation function of �u(~x). De�ne g(~x) =

P
~n
fu(~x�~na)

which is periodic with period a in each coordinate direction
(though fu(�) is non-zero over a region of size 2a�2a�2a),
has Fourier transform

G(~k) = jPu(~k)j
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and has Fourier series F~n = a3jP~nj
2 = (1=a3)jPu((2�=a)~n)j

2.
Since only F~n is measured, the only function that can be
directly reconstructed by inverse Fourier series is g(~x), the
so-called Patterson function.

We now add the icosahedral symmetry of the virus par-
ticle. For notational simplicity, we again consider only the
simplest case, which is a single virus particle in each unit cell
positioned in a way that none of the 60 icosahedral symme-
tries are related to the space group symmetries of the crys-
tal. The �rst key fact is that the Fourier transform of an
icosahedrally symmetric object has icosahedral symmetry.
Therefore, the icosahedral symmetry of �u(~x) implies that

Pu(~k) has icosahedral symmetry and therefore the measure-
ments F~n = (1=a3)jPu((2�=a)~n)j

2 are samples on the recip-

rocal lattice of an icosahedrally symmetric function. Let ~k0

be one of the 59 vectors that are symmetry related to ~k.

Therefore, Pu(~k) = Pu(~k0). The second key fact, due to
the assumption that none of the 60 icosahedral symmetries
are related by the space group symmetries of the crystal,

is that ~k0 cannot be written in the form ~k� (2�=a)~n when
the components of ~n are restricted to integer values. There-

fore, if ~k is on the reciprocal lattice (and therefore jPu(~k)j
2

is measured) then ~k0 is not on the reciprocal lattice (and

therefore jPu(~k
0)j2 is not measured). Therefore, the icosa-

hedral symmetry provides 59 additional measurements of

jPu(~k)j
2 for each measurement that is actually made. (If

some of the 60 icosahedral symmetries are also in the crys-
tal space group then, rather than 59 additional values, there
is a proportionally smaller number such as 29). The third

key fact is that the data is samples of Fu(~k) which has (in-
verse) Fourier transform fu(~x) which is space limited to a
region of size 2a� 2a � 2a.

Now consider the missing data problem. In order to
achieve good performance with iterative phase re�nement

methods it is necessary to have measured jPu(~k)j
2 for all

reciprocal lattice points (2�=a)~n. However, as described
above, this is often not possible experimentally. Therefore,
we want to interpolate the missing values from the mea-
sured values. The resulting interpolated values will likely
be good enough to re�ne the phases because we have 60-fold
redundant data. The interpolation problem is di�cult for
the reasons described in the Abstract. Note, however, that
the interpolation only needs to be done once, at the begin-
ning of the re�nement process, so substantial computation

can be done. Tobacco Ring Spot Virus (J.E. Johnson, per-
sonal communication, 1995) provides a typical example: In
the resolution range of 50{4�A, there were 66594 measured
unique re
ections which is roughly 22% of the total unique
re
ections in that resolution range.

3. THEORY OF INTERPOLATION

The general problem is interpolation of a band-limited func-
tion from samples of the function. This problem has a long
history [6] and, if an in�nite number of samples are taken
on a rectangular lattice, a well-known answer in terms of
\sin(x)=x". Very few exact results giving explicit formulas
for the interpolating function are known when an in�nite
number of samples are taken on a non-rectangular lattice
(e.g., Refs. [5, 10]). A �nite number of samples never leads
to a unique interpolation without an additional constraint
and numerous constraints have been studied: polynomial
interpolators [1, 7], non-linear warpings of the independent
variable [3], linear band-limited interpolators which min-
imize the energy in the interpolated function [2, 8], and
interpolation motivated by the two-dimensional problems
that arise in computed tomography (see Ref. [4] and the
references cited therein). For the missing data problem the
most natural approach appears to be linear band-limited in-
terpolators which minimize the energy in the interpolated
function.

Our approach is to consider interpolation as a least
squares problem where all of the a priori information (the
support and the icosahedral symmetry constraints on �(~x))
are built into the basis functions and the least squares op-
timization problem is a natural method for dealing with
the inconsistent data. In work not described here we show
that a Bayesian estimation problem with Gaussian a priori
model and Gaussian measurement noise is a special case
of the least squares problem and that, if the data is con-
sistent, minimum-energy band-limited exact interpolation
(MEBLEI) is also a special case. We also show how to re-
duce the computation by the number number of symmetry
elements, which is 60 in the complete icosahedral group.

There are two natural sets of basis functions. Both the
MEBLEI and the Bayesian formulations suggest the basis

functions bj(~x) = 1j~xj�2R+ (~x)(1=60)
P

59

�=0
exp(iR�

~kj � ~x)

where 1S is the indicator function for the set S, R� 2 R3 are
the orthonormal matrices that describe the symmetry oper-

ations (all rotations) of the icosahedral group, and ~kj is the
~k location for the jth measurement. The second set of basis
functions is bl;n;p(~x) = Tl;n(�; �)Hl;p(r) where ~x = (r; �; �)
in spherical coordinates, Tl;n(�; �) are icosahedral harmon-
ics [12, 11], and Hl;p(r) are certain linear combinations of
lth order spherical Bessel functions that can be derived by
examining a Sturm-Liouville problem. The two key proper-
ties of the Tl;n functions are that every weighted sum of Tl;n
functions is a function that has icosahedral symmetry and
every smooth icosahedrally symmetric function can be ex-
panded as a weighted sum of Tl;n functions. It is standard to
require the additional properties that the Tl;n functions are
real valued and orthonormal. The three key properties of
the Hl;p functions are that for �xed l they form a complete
orthonormal set, they have the correct support (Hl;p(r) = 0



for r > R+), and the spherical Hankel transform of Hl;p can
be computed analytically (this transform is the radial com-
ponent of the 3D Fourier transform of bl;n;p(~x)). Note that
the bj(~x) can be used in a least squares problem even if the
data is inconsistent. The advantage of the bl;n;p(~x) is that
the resolution of the interpolating function and the size of
the least squares problem can be controlled by limiting the
maximum l and p that are considered while, in contrast, the
number of bj(~x) functions is always equal to the number of
measurements.

4. NUMERICAL RESULTS

We consider interpolation problems for Cowpea Mosaic Virus
(CpMV) for which the 3D atomic structure is known. The
calculations are based on simulated data so that truth is
known: Data for 0 < j~kj � kmax�A are computed, 80% of the
computed measurements are deleted by a Bernoulli random
process, estimates of the deleted measurements are com-
puted by interpolation based on the remaining 20% of the
computed measurements, and performance measures are
computed based on the di�erence between the computed
and interpolated measurements for the 80% of the com-
puted measurements that were deleted. (A more realistic
deletion process based on cones of retained measurements
has also been considered and gives similar results). Three
performance measures are considered:
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where G(~k) is the data, Ĝ(~k) is the interpolator in Fourier
space, and the sums in the lp norms k � kp are over those
measurements that were deleted.

Only the bl;n;p(~x) basis functions are considered here.

The parameters are kmax = 1=20�A
�1
, R+ = 160�A, the p

sum is truncated to bkmax2R+c, and the l sum is truncated
to Lmax for which a variety of values are considered. The
least squares problem is solved using the singular value de-
composition.

Representative results are shown in Table 1. In this
example, the interpolator is estimated from 1399 retained
measurements and tested on 5674 deleted measurements. In
terms of R1, which is the performance measure that crys-
tallographers traditionally focus on, performance is doubled
with Lmax = 30 which represents an interpolator with 312
parameters (there are no icosahedral harmonics for l 2 f1{
5, 7{9, 11, 13, 14, 17, 19, 23, 29g, one harmonic for the
remaining l < 30, and two harmonics for l = 30; it is not
necessary to include even l because g(~x) = g(�~x)).

We are currently working on problems with kmax =

1=10�A
�1
, which have many more retained measurements;

problems with more complicated relationships between the
crystal's space group and the virus' icosahedral group, and
problems with experimental data.

Current Lmax
10 20 30

Self R2 N/A 0.00194 0.000198 2.72e-05
R1 0.25 0.322 0.227 0.146
R2 N/A 0.0756 0.00806 0.000485
C 0.8 0.969 0.988 0.995

Table 1: Performance of the interpolation based on bl;n;p(~x)
basis functions. The column \Current" represents current
practice. \Self R2" refers to the R2 performance measure
computed not over the 80% of deleted points but rather
over the 20% of retained points. Since there are fewer basis
functions than data points, the least squares problem does
not generate an exact interpolator.
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