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ABSTRACT

This paper discusses the application of Hidden Markov
Models (HMMs) to solve the Translational and Rotational
Invariant Automatic Target Recognition (TRIATR) prob-
lem associated with SAR imagery. This approach is based
on a cascade of these stages: preprocessing, feature extrac-
tion and selection, and classi�cation. Preprocessing and
feature extraction and selection involve successive applica-
tions of extraction operations from measurements of the
Radon transform of target chips. The features which are
invariant to changes in rotation, position and shifts, al-
though not to changes in scale are optimized through the
use of feature selection techniques. The classi�cation stage
successively takes as its inputs the multidimensional mul-
tiple observation sequences, parameterizes them statisti-
cally using continuous density models to capture target and
background appearance variability, and thus results in the
TRIATR-HMMs. Experimental results have demonstrated
that the recognition rate is as high as 99% over both the
training set and the testing set.

Keywords: HMMs, ATR, SAR, invariant, Radon Trans-
form, and rotation.

1. INTRODUCTION

The problem of Automatic Target Recognition (ATR) is
a di�cult one. The appearance of a target can often as-
sume a wide variety of rotational and shifted positions and
may be altered by near-by and occluding clutter. E�ective
end-to-end recognition systems that performs well in unpre-
dictable environments remains an unsolved problem. De-
tails about some complex approaches that have been used
to overcome these di�culties by deploying statistical pat-
tern recognition, model vision based methods, or neural
networks are reviewed in [1] and [2]. Hidden Markov
Models (HMMs) o�er potential to address ATR in a unique
way. Historically, they have been used for various applica-
tions of speech recognition, optical character recognition,
and handwriting veri�cation. The power of HMM algo-
rithms may be attributed to the fact that the observed data
can be stretched or shrunk to �t the models, and that they
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are computationally e�cient. In the case of speech recogni-
tion, for instance, speaker identi�ers have been developed
that are insensitive to di�erent dialects. Likewise, the de-
sign of target recognizer that can tolerate a certain degree
of variability in appearance should be possible. In this pa-
per, we consider ATR of SAR images. The approach taken
is to parameterize the Translational and Rotational Invari-
ant Automatic Target Recognition Hidden Markov Models
(TRIATR-HMMs) with features that are independent of ro-
tational e�ects. The Radon Transform and Discrete Fourier
Transform (DFT) are two attractive representations that
can be used because. The Radon transform displays image
information in polar form that is independent of the cycli-
cal ordering. The Discrete Fourier transform (DFT) mag-
nitude remains unchanged with respect to such orderings.
If target reection is ignored, rotational and translational
invariant features and precise HMM parameter estimates
can be achieved using these two transformations and the
target variation problem can be mitigated.

In Section 2, an overview of HMMs is introduced. In
Section 3, the system con�guration and implementation are
summarized. Experimental results illustrating the perfor-
mance of the system is shown in Section 4, followed by a
summary in Section 5.

2. OVERVIEW OF HIDDEN MARKOV MODELS

2.1. Introduction to HMMs

A discrete Markov process is characterized by a �nite num-
ber of states. The system is in one of these states at any
time and changes between the states take place at equally
spaced discrete times according to the state transition prob-
abilities associated with each state. In the case of a �rst-
order Markov chain, the state transition probabilities do
not depend on the history of the process, but only on the
current state. If there is a unique observation symbol joined
with each state, the process is characterized by the above
parameters. For many problems of interest, di�erent obser-
vation symbols may occur in each state and given an obser-
vation, it is not possible to decide which state the model is
in. In this case the observation is a probabilistic function
of the state. The underlying stochastical process is not ob-
servable, it is hidden, and therefore these models are called
hidden Markov models. Indeed, an HMM is nothing more
than a probabilistic function of a Markov process.



2.2. Necessity of HMMs

HMMs are useful when one can think of underlying events
probabilistically generating surface events. One widespread
use of this is tagging|assigning parts of speech (or other
classi�ers) to the words in a text. We think of there being
an underlying Markov chain of parts of speech from which
the actual words of the text are generated.

When this general model is suitable, the further reason
that HMMs are very useful is that they are one of a class
of models for which there exist e�cient methods of training
through use of the Expectation Maximization (EM) algo-
rithm. Given su�cient data that is assumed to have been
generated by (some) HMM|where the model architecture
is �xed but not the transition probabilities|this algorithm
allows us to learn the model parameters automatically that
best account for the observed data. This is in contrast to the
traditional Arti�cial Neural Network (ANN) architectures
where the conditions are interrelated, the parameter vector
(weights matrix) is random and it is estimated in such a
manner so that condition discrepancy is maximized. How-
ever, HMMs do have important limitations. The biggest is
that HMMs do not capture any higher-order correlations.
Furthermore, the assumption that the distributions of in-
dividual observation parameters can be well represented as
a mixture of Gaussian or autoregressive densities [3] may
be inappropriate for underlying distribution in many cases.
However, it is not unreasonable to make this assumption in
this experiment due to su�cient training data.

3. MULTISTAGE TARGET CLASSIFICATION
ALGORITHM

3.1. Data Preparation

The MSTAR database consisting of training and testing
datasets is investigated as part of the evaluation e�ort. This
computer generated database spans 360 degrees of target
azimuth pose angle variation in 1-2 degree increments with
17 and 15 degrees of depression angle for the training and
testing set respectively, i.e., there is a deliberate mismatch
between the training and testing images. The public por-
tion of the database is composed of two trucks and one
tank: BMP, BTR and T72, respectively. In addition, the
BMP and T72 directories provide images at di�erent lev-
els of noise. Figure 1 depicts original targets at di�erent
orientations.

3.2. System Con�guration

The system con�guration in Figure 2 depicts the training
phase as well as the testing phase. In each of the following
subsections, details about each block are discussed.

3.2.1. Training Phase

Refering to Figure 2 (a), the target chip is �rst preprocessed
by a normalizing �lter. The �lter consists of a rectanglar
annular window that border the target chip like a picture
frame. The thickness of the frame can be varied depend-
ing on how much of the background information is to be
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Figure 1: High resolution (1 ft by ft) synthetic-aperture
radar (SAR) images of three signatures. Column 1 and 2
depict images from the training and testing dataset, respec-
tively. 1(a), 2(a):BMP, 1(b), 2(b): BTR, 1(c), 2(c): T72.
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Figure 2: A diagram for training and testing with HMM
(a) Training Phase and (b) Testing Phase



(a) Training

(10,1)
Percent Classified as

BMP T72 BTR
BMP 37.8 30.0 32.2
T72 14.8 73.0 12.2
BTR 31.5 12.9 55.6
total percent recognition = 55.4

(10,2)
BMP 47.3 25.9 26.8
T72 19.2 74.1 6.7
BTR 19.0 2.6 78.4
total percent recognition = 63.2

(10,3)
BMP 91.2 0.6 8.2
T72 0.3 99.7 0
BTR 2.6 0 97.4
total percent recognition = 95.7

(10,4)
BMP 88.6 2.6 8.8
T72 0.4 99.3 0.3
BTR 11.6 0 88.4
total percent recognition = 93.1

(10,5)
BMP 90.9 1.9 7.2
T72 1.5 97.9 0.6
BTR 17.2 0 82.8
total percent recognition = 92.8

(10,6)
BMP 92.4 1.4 6.2
T72 1.0 99.0 0
BTR 19.0 0 81.0
total percent recognition = 93.6

(10,7)
BMP 86.9 4.5 8.6
T72 3.0 96.7 0.3
BTR 9.5 0.9 89.7
total percent recognition = 91.5

(10,8)
BMP 77.1 1.4 21.5
T72 2.2 97.8 0
BTR 6.1 0 93.9
total percent recognition = 88.4

(b) Testing

(10,1)
Percent Classified as

BMP T72 BTR
BMP 24.1 57.0 18.9
T72 12.1 74.4 13.5
BTR 28.2 31.3 40.5
total percent recognition = 47.9

(10,2)
BMP 30.5 55.1 14.4
T72 17.6 75.1 7.3
BTR 26.2 21.5 52.3
total percent recognition = 52.6

(10,3)
BMP 89.2 5.0 5.8
T72 0 99.8 0.2
BTR 16.9 1.5 81.6
total percent recognition = 92.6

(10,4)
BMP 90.8 5.3 3.9
T72 0.3 99.3 0.4
BTR 36.4 2.6 61.0
total percent recognition = 90.1

(10,5)
BMP 92.8 2.6 4.6
T72 1.7 98.3 0
BTR 39.5 1.0 59.5
total percent recognition = 90.3

(10,6)
BMP 90.9 2.9 6.2
T72 1.2 98.6 0.2
BTR 39.5 1.5 59.0
total percent recognition = 89.6

(10,7)
BMP 84.1 7.4 8.5
T72 2.2 96.9 0.9
BTR 27.7 2.6 69.7
total percent recognition = 87.5

(10,8)
BMP 79.1 3.6 17.3
T72 1.9 97.9 0.2
BTR 21.5 1.5 77.0
total percent recognition = 86.8

Table 1: An e�ect of the number of best features on the
classi�cation performance evaluated on two datasets: (a)
training and (b) testing , where (m,n) is a model with
m states and n best feature(s). The empirical results are
based on a suboptimal Sequencial Forward Search (SFS)
search strategy with Euclidean inter-class distance selection
criterion.

included in the �lter calcucations. The background statis-
tics are modeled by calculating the mean, u, and standard
deviation, �, of the pixels contained with the outer and in-
ner borders of the frame. The mean is subtracted from the
pixel being normalized, x, and the result is divided by � as
shown,

yij =

�
(xij � uij)=�ij if yij � 0
0 otherwise,

where y is the normalized output. The purpose of this �lter
is to highlight regions of the image that contrast substan-
tially with the local background characteristics.

The next stage of the feature extraction is to take the
Radon transform to incorporate target signatures at as many
orientations as possible. To reduce the computation, the
target chip is down-sampled by a factor of 2 before the
Radon transform is taken. The 64 projections of a target
chip are taken. The mean, standard deviation, and width
of each projection is then extracted. The width is calcu-
lated by counting the number of pixels with value greater
than the mean. They then feed into the Fourier transform,
sort, and shift invariance techniques. The shift-invariance
method is achieved by shifting maximum value to the cen-
ter of the vector and then moving the centroid of the new

vector to the center. By doing that, we have a shift and a
rotation invariant feature matrix of 64� 9.

Due to the fact that the magnitude of the Fourier trans-
form can be very large at some points, the original feature
vector is replaced by its mean/gain normalization (the ratio
of the vector and the mean vector are computed across all
images within the same signature type). This is done to
reduce the dynamic range of the feature values and thus al-
low more precise estimation of the Gaussian parameters of
the HMM and, eventually, better recognition performance.

In the HMM approach, the problem can be stated as
follows. The HMMs for each target type should be carried
out with the ability to discriminate between target types.
The topology of the HMM includes a user-speci�ed number
of emitting states, a prespeci�ed left-to-right model with a
skip transition allowed, a diagonal covariance matrix, single
mixture, continuous density and a multi-input-multi-output
system.

A choice of size and type (topology) of HMMs have been
studied for ATR systems. In this case, small structures with
10 states or fewer are suitable not only for a level of com-
plexity of MSTAR dataset but also for statistically clustered
data (no hand registration). Of particular relevance to this
work is the challenge to distinguish between the two trucks
which look very similar visually.

The observation sequence for each training token is seg-
mented into state clusters by determining the optimum
alignment of the current model with each training token.
The segmentation is achieved using the Viterbi algorithm.
The initial estimate of the model parameters can be as-
signed on the basis of any available model that is appropri-
ate to the data and probabilistic requirements. The model
parameters are then reestimated according to histograms
of the results of the segmentation. The �nal step in the
training loop is the test for convergence, the terminating
condition for the training procedure. The resulting model
is compared to the previous model by examining the accu-
mulated likelihood (Viterbi) scores beween training tokens
and each model. If the di�erence falls below a threshold,
then model convergence is assumed. Otherwise, the overall
training loop is repeated.

3.2.2. Testing Phase

The preprocessing and feature extraction are repeated in
the testing phase. The di�erence from the training begins
at the Viterbi decoder, which can also be viewed as a trans-
former that maps image features into a sequence of coded
states. The decoder �nds the single best state sequence
by optimally mapping the observation sequence of the data
onto each target model. The mapping is computed from
the observation probabilities, state transition probabilities
and other initial model parameters according to a maximum
likelihood criterion.

The recognition procedure is accomplished by evaluat-
ing two Bayesian distortion measures of an observation vec-
tor with respect to the all target models. For each unknown
input sequence which is to be recognized, the processing of
Figure 2 (b) must be carried out, namely a calculation
of model likelihoods for all possible models, and followed
by selection of the target model whose likelihood is high-



est. This problem is similar to isolated word recognition in
speech processing [3].

4. EXPERIMENTAL RESULTS

Tables 1 and 2 show the classi�cation performance of the
baseline classi�er as a confusion matrix that tabulates the
correct and incorrect classi�cations. Several combinations
of a number of state running from 2 to 11 and a number of
channels ( best features) ranging from 1 to 9 were tested.
An HMM with 10 states and 3 best features provided the
best overall performance among 90 di�erent reference mod-
els that were tested. Recall that the classi�er used HMM
parameters constructed purely from training targets; for
both tables, the classi�cation results shown in the left col-
umn (a) belong to training dataset whereas the right col-
umn (b) shows the detection rate for the testing dataset
that passed the same preprocessing and feature extraction
stages. Table 1 shows the classi�cation performance of both
the training and testing data set with the number of state,
m, �xed at 5. Table 2 shows the percent of correct classi�-
cation with the number of features �xed at 7. From table 1,
when the number of best features is allowed to increase, the
performance is better when 3 to 6 best features are used.
Regardless of the similarity between BMP and BTR and
the mismatch conditions, the ability to correctly classify
between targets is retained at an acceptable level.

There are a few curious properties to observe about
these two tables. First of all, from observing Table 1, it can
be seen that distinguishing T72 from other classes is achiev-
able with a smaller number of best features compared to the
other two targets. Second, to get an idea of how large the
number of state should be, the number of state is raised
from 7 to 11 with the number of best features (obtained
from an optimal search branch-and-bound (BB)) �xed at 7,
from table 2, the best performance is attained by a HMM
with 9 or 10 states. The reason for this is that at �rst the
training sequences containing 695, 688, and 232 images for
BMP, T72, and BTR respectively, when trained, yield poor
BTR statistical parameters due to its insu�cient number of
BTR training images thus, as the number of state increases
from 10 to 11, recognizing BTR causes the problem in both
training and testing cases although BMP and T72 are more
correctly classi�ed. It is clear from these two tables that
BMP and T72 bene�t from having more states than the
BTR.

5. SUMMARY

HMMs implemented with the proper choice of features were
found useful in solving ATR problem. The performance
ranges according to the number of states, the topology and
the complexity of training data used. In the experiment,
it was found empirically that an HMM with 10 states and
3 best features could e�ectively distinguish all 3 military
targets: BMP, BTR and T72. The entire public MSTAR
database was used as part of the investigation.

(a) Training

(7,7)
Percent Classified as

BMP T72 BTR
BMP 84.7 4.6 10.7
T72 14.4 85.5 0.1
BTR 24.1 1.3 74.6
total percent recognition = 83.6

(9,7)
Percent Classified as

BMP T72 BTR
BMP 90.9 1.1 8.0
T72 1.7 98.2 0.1
BTR 22.0 0.4 77.6
total percent recognition = 92.1

(10,7)
Percent Classified as

BMP T72 BTR
BMP 87.9 1.7 10.4
T72 0.7 98.8 0.5
BTR 12.0 1.3 86.7
total percent recognition = 92.4

(11,7)
Percent Classified as

BMP T72 BTR
BMP 94.5 1.3 4.2
T72 1.3 98.7 0
BTR 18.5 0 81.5
total percent recognition = 94.2

(b) Testing

(7,7)
Percent Classified as

BMP T72 BTR
BMP 85.4 5.8 8.8
T72 12.3 87.7 0
BTR 37.4 3.6 59.0
total percent recognition = 82.6

(9,7)
Percent Classified as

BMP T72 BTR
BMP 87.1 2.4 10.5
T72 1.0 98.8 0.2
BTR 29.2 0.5 70.3
total percent recognition = 89.7

(10,7)
Percent Classified as

BMP T72 BTR
BMP 88.3 2.7 9.0
T72 1.0 97.9 1.1
BTR 25.1 2.0 72.9
total percent recognition = 90.2

(11,7)
Percent Classified as

BMP T72 BTR
BMP 94.5 2.4 3.1
T72 1.2 98.8 0
BTR 41.5 1.0 57.5
total percent recognition = 91.0

Table 2: An e�ect of increasing the number of state from
7 to 11 on the classi�cation performance evaluated on two
datasets: (a) training and (b) testing , where (m,n) is a
model with m states and n best feature(s). The empirical
results are based on an optimal branch-and-bound (BB)
search strategy with Euclidean inter-class distance selection
criterion.
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